
public class EigenvalueDecomposition extends Object implements Serializable
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.timesTranspose(V)) and V.timesTranspose(V) equals the identity matrix.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond().
| Modifier and Type | Field and Description | 
|---|---|
private double | 
cdivi  | 
private double | 
cdivr  | 
private double[] | 
d
Arrays for internal storage of eigenvalues. 
 | 
private double[] | 
e
Arrays for internal storage of eigenvalues. 
 | 
private double[][] | 
H
Array for internal storage of nonsymmetric Hessenberg form. 
 | 
private boolean | 
issymmetric
Symmetry flag. 
 | 
private int | 
n
Row and column dimension (square matrix). 
 | 
private double[] | 
ort
Working storage for nonsymmetric algorithm. 
 | 
private static long | 
serialVersionUID
Serial version 
 | 
private double[][] | 
V
Array for internal storage of eigenvectors. 
 | 
| Constructor and Description | 
|---|
EigenvalueDecomposition(Matrix Arg)
Check for symmetry, then construct the eigenvalue decomposition 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
cdiv(double xr,
    double xi,
    double yr,
    double yi)  | 
Matrix | 
getD()
Return the block diagonal eigenvalue matrix 
 | 
double[] | 
getImagEigenvalues()
Return the imaginary parts of the eigenvalues 
 | 
double[] | 
getRealEigenvalues()
Return the real parts of the eigenvalues 
 | 
Matrix | 
getV()
Return the eigenvector matrix 
 | 
private void | 
hqr2()  | 
private void | 
orthes()  | 
private void | 
tql2()  | 
private void | 
tred2()  | 
private static final long serialVersionUID
private int n
private boolean issymmetric
private double[] d
private double[] e
private double[][] V
private double[][] H
private double[] ort
private transient double cdivr
private transient double cdivi
public EigenvalueDecomposition(Matrix Arg)
Arg - Square matrixprivate void tred2()
private void tql2()
private void orthes()
private void cdiv(double xr,
        double xi,
        double yr,
        double yi)
private void hqr2()
public Matrix getV()
public double[] getRealEigenvalues()
public double[] getImagEigenvalues()
public Matrix getD()