
public class EigenvalueDecomposition extends Object implements Serializable
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.timesTranspose(V)) and V.timesTranspose(V) equals the identity matrix.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond().
| Modifier and Type | Field and Description | 
|---|---|
| private double | cdivi | 
| private double | cdivr | 
| private double[] | dArrays for internal storage of eigenvalues. | 
| private double[] | eArrays for internal storage of eigenvalues. | 
| private double[][] | HArray for internal storage of nonsymmetric Hessenberg form. | 
| private boolean | issymmetricSymmetry flag. | 
| private int | nRow and column dimension (square matrix). | 
| private double[] | ortWorking storage for nonsymmetric algorithm. | 
| private static long | serialVersionUIDSerial version | 
| private double[][] | VArray for internal storage of eigenvectors. | 
| Constructor and Description | 
|---|
| EigenvalueDecomposition(Matrix Arg)Check for symmetry, then construct the eigenvalue decomposition | 
| Modifier and Type | Method and Description | 
|---|---|
| private void | cdiv(double xr,
    double xi,
    double yr,
    double yi) | 
| Matrix | getD()Return the block diagonal eigenvalue matrix | 
| double[] | getImagEigenvalues()Return the imaginary parts of the eigenvalues | 
| double[] | getRealEigenvalues()Return the real parts of the eigenvalues | 
| Matrix | getV()Return the eigenvector matrix | 
| private void | hqr2() | 
| private void | orthes() | 
| private void | tql2() | 
| private void | tred2() | 
private static final long serialVersionUID
private int n
private boolean issymmetric
private double[] d
private double[] e
private double[][] V
private double[][] H
private double[] ort
private transient double cdivr
private transient double cdivi
public EigenvalueDecomposition(Matrix Arg)
Arg - Square matrixprivate void tred2()
private void tql2()
private void orthes()
private void cdiv(double xr,
        double xi,
        double yr,
        double yi)
private void hqr2()
public Matrix getV()
public double[] getRealEigenvalues()
public double[] getImagEigenvalues()
public Matrix getD()