Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.evaluation.paircounting |
Evaluation of clustering results via pair counting.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
|
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
|
class |
DBSCAN<O,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
sets in a database.
|
class |
EM<V extends NumberVector<V,?>>
Provides the EM algorithm (clustering by expectation maximization).
|
class |
KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the k-means algorithm.
|
class |
OPTICSXi<N extends NumberDistance<N,?>>
Class to handle OPTICS Xi extraction.
|
class |
SNNClustering<O>
Shared nearest neighbor clustering.
|
Modifier and Type | Class and Description |
---|---|
class |
CASH
Provides the CASH algorithm, an subspace clustering algorithm based on the
hough transform.
|
class |
COPAC<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the COPAC algorithm, an algorithm to partition a database according
to the correlation dimension of its objects and to then perform an arbitrary
clustering algorithm over the partitions.
|
class |
ERiC<V extends NumberVector<V,?>>
Performs correlation clustering on the data partitioned according to local
correlation dimensionality and builds a hierarchy of correlation clusters
that allows multiple inheritance from the clustering result.
|
class |
FourC<V extends NumberVector<V,?>>
4C identifies local subgroups of data objects sharing a uniform correlation.
|
class |
ORCLUS<V extends NumberVector<V,?>>
ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high
dimensional spaces.
|
Modifier and Type | Field and Description |
---|---|
protected Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.Parameterizer.algC |
private Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.partitionAlgorithm
Get the algorithm to run on each partition.
|
Modifier and Type | Method and Description |
---|---|
ClusteringAlgorithm<Clustering<Model>> |
COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
Returns the partition algorithm.
|
Constructor and Description |
---|
COPAC(FilteredLocalPCABasedDistanceFunction<V,?,D> partitionDistanceFunction,
Class<? extends ClusteringAlgorithm<Clustering<Model>>> partitionAlgorithm,
Collection<Pair<OptionID,Object>> partitionAlgorithmParameters)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
CLIQUE<V extends NumberVector<V,?>>
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
dense clusters in subspaces of maximum dimensionality.
|
class |
DiSH<V extends NumberVector<V,?>>
Algorithm for detecting subspace hierarchies.
|
class |
PreDeCon<V extends NumberVector<V,?>>
PreDeCon computes clusters of subspace preference weighted connected points.
|
class |
PROCLUS<V extends NumberVector<V,?>>
Provides the PROCLUS algorithm, an algorithm to find subspace clusters in
high dimensional spaces.
|
class |
SUBCLU<V extends NumberVector<V,?>>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
shaped and positioned clusters in subspaces.
|
Modifier and Type | Class and Description |
---|---|
class |
ByLabelClustering
Pseudo clustering using labels.
|
class |
ByLabelHierarchicalClustering
Pseudo clustering using labels.
|
class |
TrivialAllInOne
Trivial pseudo-clustering that just considers all points to be one big
cluster.
|
class |
TrivialAllNoise
Trivial pseudo-clustering that just considers all points to be noise.
|
Modifier and Type | Field and Description |
---|---|
private ClusteringAlgorithm<?> |
EvaluatePairCountingFMeasure.referencealg
Reference algorithm.
|
protected ClusteringAlgorithm<?> |
EvaluatePairCountingFMeasure.Parameterizer.referencealg |
Constructor and Description |
---|
EvaluatePairCountingFMeasure(ClusteringAlgorithm<?> referencealg,
boolean noiseSpecialHandling)
Constructor.
|