de.lmu.ifi.dbs.elki.math.statistics
Class PolynomialRegression
java.lang.Object
de.lmu.ifi.dbs.elki.math.statistics.MultipleLinearRegression
de.lmu.ifi.dbs.elki.math.statistics.PolynomialRegression
public class PolynomialRegression
- extends MultipleLinearRegression
A polynomial fit is a specific type of multiple regression. The simple
regression model (a first-order polynomial) can be trivially extended to
higher orders.
The regression model y = b0 + b1*x + b2*x^2 + ... + bp*x^p + e is a system of
polynomial equations of order p with polynomial coefficients { b0 ... bp}.
The model can be expressed using data matrix x, target vector y and parameter
vector ?. The ith row of X and Y will contain the x and y value for the ith
data sample.
The variables will be transformed in the following way: x => x1, ..., x^p =>
xp Then the model can be written as a multiple linear equation model: y = b0
+ b1*x1 + b2*x2 + ... + bp*xp + e
Field Summary |
int |
p
The order of the polynom. |
p
public final int p
- The order of the polynom.
PolynomialRegression
public PolynomialRegression(Vector y,
Vector x,
int p)
- Provides a new polynomial regression model with the specified parameters.
- Parameters:
y
- the (n x 1) - vector holding the response values (y1, ..., yn)^T.x
- the (n x 1)-vector holding the x-values (x1, ..., xn)^T.p
- the order of the polynom.
xMatrix
private static Matrix xMatrix(Vector x,
int p)
adaptedCoefficientOfDetermination
public double adaptedCoefficientOfDetermination()
- Returns the adapted coefficient of determination
- Returns:
- the adapted coefficient of determination
estimateY
public double estimateY(double x)
- Performs an estimation of y on the specified x value.
- Parameters:
x
- the x-value for which y is estimated
- Returns:
- the estimation of y