| 
  | 
|||||||||||||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||||||||||||||
| Packages that use Matrix | |
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
 
 Clustering algorithms are supposed to implement the Algorithm-Interface.  | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | Correlation clustering algorithms | 
| de.lmu.ifi.dbs.elki.data | Basic classes for different data types, database object types and label types. | 
| de.lmu.ifi.dbs.elki.data.model | Cluster models classes for various algorithms. | 
| de.lmu.ifi.dbs.elki.database | ELKI database layer - loading, storing, indexing and accessing data | 
| de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | Distance functions using correlations. | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | Kernel functions. | 
| de.lmu.ifi.dbs.elki.math | Mathematical operations and utilities used throughout the framework. | 
| de.lmu.ifi.dbs.elki.math.linearalgebra | Linear Algebra package provides classes and computational methods for operations on matrices. | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | Principal Component Analysis (PCA) and Eigenvector processing. | 
| de.lmu.ifi.dbs.elki.math.statistics | Statistical tests and methods. | 
| de.lmu.ifi.dbs.elki.utilities | Utility and helper classes - commonly used data structures, output formatting, exceptions, ... | 
| Uses of Matrix in de.lmu.ifi.dbs.elki.algorithm.clustering | 
|---|
| Method parameters in de.lmu.ifi.dbs.elki.algorithm.clustering with type arguments of type Matrix | |
|---|---|
protected  double | 
EM.assignProbabilitiesToInstances(Database<V> database,
                               List<Double> normDistrFactor,
                               List<V> means,
                               List<Matrix> invCovMatr,
                               List<Double> clusterWeights,
                               HashMap<Integer,double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and compute the expectation value of the current mixture of distributions.  | 
| Uses of Matrix in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | 
|---|
| Fields in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation declared as Matrix | |
|---|---|
(package private)  Matrix | 
ORCLUS.ORCLUSCluster.basis
The matrix defining the subspace of this cluster.  | 
| Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation that return Matrix | |
|---|---|
private  Matrix | 
CASH.determineBasis(double[] alpha)
Determines a basis defining a subspace described by the specified alpha values.  | 
private  Matrix | 
ORCLUS.findBasis(Database<V> database,
          ORCLUS.ORCLUSCluster cluster,
          int dim)
Finds the basis of the subspace of dimensionality dim for the
 specified cluster. | 
private  Matrix | 
CASH.runDerivator(Database<ParameterizationFunction> database,
             int dim,
             CASHInterval interval,
             Set<Integer> ids)
Runs the derivator on the specified interval and assigns all points having a distance less then the standard deviation of the derivator model to the model to this model.  | 
| Methods in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation with parameters of type Matrix | |
|---|---|
private  Database<ParameterizationFunction> | 
CASH.buildDB(int dim,
        Matrix basis,
        Set<Integer> ids,
        Database<ParameterizationFunction> database)
Builds a dim-1 dimensional database where the objects are projected into the specified subspace.  | 
private  ParameterizationFunction | 
CASH.project(Matrix basis,
        ParameterizationFunction f)
Projects the specified parameterization function into the subspace described by the given basis.  | 
| Uses of Matrix in de.lmu.ifi.dbs.elki.data | 
|---|
| Methods in de.lmu.ifi.dbs.elki.data that return Matrix | |
|---|---|
 Matrix | 
FloatVector.getRowVector()
 | 
 Matrix | 
SparseFloatVector.getRowVector()
 | 
 Matrix | 
NumberVector.getRowVector()
Returns a Matrix representing in one row and getDimensionality() columns the values of this NumberVector of V. | 
 Matrix | 
DoubleVector.getRowVector()
 | 
 Matrix | 
BitVector.getRowVector()
Returns a Matrix representing in one row and getDimensionality() columns the values of this BitVector as
 double values. | 
| Constructors in de.lmu.ifi.dbs.elki.data with parameters of type Matrix | |
|---|---|
DoubleVector(Matrix columnMatrix)
Expects a matrix of one column.  | 
|
FloatVector(Matrix columnMatrix)
Expects a matrix of one column.  | 
|
| Uses of Matrix in de.lmu.ifi.dbs.elki.data.model | 
|---|
| Fields in de.lmu.ifi.dbs.elki.data.model declared as Matrix | |
|---|---|
private  Matrix | 
EMModel.covarianceMatrix
Cluster covariance matrix  | 
private  Matrix | 
CorrelationAnalysisSolution.similarityMatrix
The similarity matrix of the pca.  | 
private  Matrix | 
CorrelationAnalysisSolution.strongEigenvectors
The strong eigenvectors of the hyperplane induced by the correlation.  | 
private  Matrix | 
CorrelationAnalysisSolution.weakEigenvectors
The weak eigenvectors of the hyperplane induced by the correlation.  | 
| Methods in de.lmu.ifi.dbs.elki.data.model that return Matrix | |
|---|---|
 Matrix | 
CorrelationAnalysisSolution.dataProjections(V p)
Returns the data vectors after projection.  | 
 Matrix | 
CorrelationAnalysisSolution.dataVectors(Matrix p)
Returns the data vectors after projection.  | 
 Matrix | 
CorrelationAnalysisSolution.errorVectors(Matrix p)
Returns the error vectors after projection.  | 
 Matrix | 
CorrelationAnalysisSolution.errorVectors(V p)
Returns the error vectors after projection.  | 
 Matrix | 
EMModel.getCovarianceMatrix()
 | 
 Matrix | 
CorrelationAnalysisSolution.getSimilarityMatrix()
Returns the similarity matrix of the pca.  | 
 Matrix | 
CorrelationAnalysisSolution.getStrongEigenvectors()
Returns a copy of the strong eigenvectors.  | 
 Matrix | 
CorrelationAnalysisSolution.getWeakEigenvectors()
Returns a copy of the weak eigenvectors.  | 
| Methods in de.lmu.ifi.dbs.elki.data.model with parameters of type Matrix | |
|---|---|
 Matrix | 
CorrelationAnalysisSolution.dataVectors(Matrix p)
Returns the data vectors after projection.  | 
private  double | 
CorrelationAnalysisSolution.distance(Matrix p)
Returns the distance of Matrix p from the hyperplane underlying this solution.  | 
 Matrix | 
CorrelationAnalysisSolution.errorVectors(Matrix p)
Returns the error vectors after projection.  | 
 void | 
EMModel.setCovarianceMatrix(Matrix covarianceMatrix)
 | 
| Constructors in de.lmu.ifi.dbs.elki.data.model with parameters of type Matrix | |
|---|---|
CorrelationAnalysisSolution(LinearEquationSystem solution,
                            Database<V> db,
                            Matrix strongEigenvectors,
                            Matrix weakEigenvectors,
                            Matrix similarityMatrix,
                            Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix.  | 
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
                            Database<V> db,
                            Matrix strongEigenvectors,
                            Matrix weakEigenvectors,
                            Matrix similarityMatrix,
                            Vector centroid,
                            NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and number format.  | 
|
EMModel(V mean,
        Matrix covarianceMatrix)
Constructor.  | 
|
| Uses of Matrix in de.lmu.ifi.dbs.elki.database | 
|---|
| Fields in de.lmu.ifi.dbs.elki.database with type parameters of type Matrix | |
|---|---|
static AssociationID<Matrix> | 
AssociationID.CACHED_MATRIX
The association id to associate an arbitrary matrix of an object.  | 
static AssociationID<Matrix> | 
AssociationID.LOCALLY_WEIGHTED_MATRIX
The association id to associate the locally weighted matrix of an object for the locally weighted distance function.  | 
static AssociationID<Matrix> | 
AssociationID.STRONG_EIGENVECTOR_MATRIX
The association id to associate the strong eigenvector weighted matrix of an object.  | 
| Uses of Matrix in de.lmu.ifi.dbs.elki.distance.distancefunction | 
|---|
| Fields in de.lmu.ifi.dbs.elki.distance.distancefunction declared as Matrix | |
|---|---|
protected  Matrix | 
WeightedDistanceFunction.weightMatrix
The weight matrix.  | 
| Methods in de.lmu.ifi.dbs.elki.distance.distancefunction that return types with arguments of type Matrix | |
|---|---|
 AssociationID<Matrix> | 
KernelBasedLocallyWeightedDistanceFunction.getAssociationID()
Returns the association ID for the association to be set by the preprocessor.  | 
| Constructors in de.lmu.ifi.dbs.elki.distance.distancefunction with parameters of type Matrix | |
|---|---|
WeightedDistanceFunction(Matrix weightMatrix)
Provides the Weighted distance for feature vectors.  | 
|
| Uses of Matrix in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | 
|---|
| Methods in de.lmu.ifi.dbs.elki.distance.distancefunction.correlation with parameters of type Matrix | |
|---|---|
private  void | 
PCABasedCorrelationDistanceFunction.adjust(Matrix v,
       Matrix e_czech,
       Matrix vector,
       int corrDim)
Inserts the specified vector into the given orthonormal matrix v at column corrDim. | 
| Uses of Matrix in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | 
|---|
| Fields in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel declared as Matrix | |
|---|---|
(package private)  Matrix | 
KernelMatrix.kernel
The kernel matrix  | 
| Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel that return Matrix | |
|---|---|
static Matrix | 
KernelMatrix.centerKernelMatrix(KernelMatrix<? extends NumberVector<?,?>> kernelMatrix)
Centers the Kernel Matrix in Feature Space according to Smola et.  | 
static Matrix | 
KernelMatrix.centerMatrix(Matrix matrix)
Centers the matrix in feature space according to Smola et.  | 
 Matrix | 
KernelMatrix.getKernel()
Get the kernel matrix.  | 
 Matrix | 
KernelMatrix.getSubColumn(int i,
             List<Integer> ids)
Returns the ith kernel matrix column for all objects in ids  | 
 Matrix | 
KernelMatrix.getSubMatrix(Collection<Integer> ids)
Returns a sub kernel matrix for all objects in ids  | 
| Methods in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with parameters of type Matrix | |
|---|---|
static Matrix | 
KernelMatrix.centerMatrix(Matrix matrix)
Centers the matrix in feature space according to Smola et.  | 
| Constructors in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with parameters of type Matrix | |
|---|---|
KernelMatrix(Matrix matrix)
Makes a new kernel matrix from matrix.  | 
|
| Uses of Matrix in de.lmu.ifi.dbs.elki.math | 
|---|
| Methods in de.lmu.ifi.dbs.elki.math with parameters of type Matrix | |
|---|---|
static double | 
MathUtil.mahalanobisDistance(Matrix weightMatrix,
                    Vector o1_minus_o2)
Compute the Mahalanobis distance using the given weight matrix  | 
| Uses of Matrix in de.lmu.ifi.dbs.elki.math.linearalgebra | 
|---|
| Subclasses of Matrix in de.lmu.ifi.dbs.elki.math.linearalgebra | |
|---|---|
 class | 
Vector
Provides a vector object that encapsulates an m x 1 - matrix object.  | 
| Fields in de.lmu.ifi.dbs.elki.math.linearalgebra declared as Matrix | |
|---|---|
private  Matrix | 
EigenPair.eigenvector
The eigenvector as a matrix.  | 
private  Matrix | 
AffineTransformation.inv
the inverse transformation  | 
private  Matrix | 
AffineTransformation.trans
The transformation matrix of dim+1 x dim+1 for homogeneous coordinates  | 
| Methods in de.lmu.ifi.dbs.elki.math.linearalgebra that return Matrix | |
|---|---|
 Matrix | 
Matrix.appendColumns(Matrix columns)
Returns a matrix which consists of this matrix and the specified columns.  | 
 Matrix | 
Matrix.arrayLeftDivide(Matrix B)
Element-by-element left division, C = A.  | 
 Matrix | 
Matrix.arrayLeftDivideEquals(Matrix B)
Element-by-element left division in place, A = A.  | 
 Matrix | 
Matrix.arrayRightDivide(Matrix B)
Element-by-element right division, C = A.  | 
 Matrix | 
Matrix.arrayRightDivideEquals(Matrix B)
Element-by-element right division in place, A = A.  | 
 Matrix | 
Matrix.arrayTimes(Matrix B)
Element-by-element multiplication, C = A.  | 
 Matrix | 
Matrix.arrayTimesEquals(Matrix B)
Element-by-element multiplication in place, A = A.  | 
 Matrix | 
Matrix.cheatToAvoidSingularity(double constant)
Adds a given value to the diagonal entries if the entry is smaller than the constant.  | 
 Matrix | 
Matrix.completeBasis()
Completes this d x c basis of a subspace of R^d to a d x d basis of R^d, i.e. appends c-d columns to this basis.  | 
 Matrix | 
Matrix.completeToOrthonormalBasis()
Completes this d x c basis of a subspace of R^d to a d x d basis of R^d, i.e. appends c-d columns to this basis.  | 
static Matrix | 
Matrix.constructWithCopy(double[][] A)
Construct a matrix from a copy of a 2-D array.  | 
 Matrix | 
Matrix.copy()
Make a deep copy of a matrix.  | 
static Matrix | 
Matrix.diagonal(double[] diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on the diagonal.  | 
static Matrix | 
Matrix.diagonal(Vector diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on the diagonal.  | 
 Matrix | 
SortedEigenPairs.eigenVectors()
Returns the sorted eigenvectors.  | 
 Matrix | 
SortedEigenPairs.eigenVectors(int n)
Returns the first n sorted eigenvectors as a matrix. | 
 Matrix | 
Matrix.exactGaussJordanElimination()
Returns a matrix derived by Gauss-Jordan-elimination using RationalNumbers for the transformations.  | 
 Matrix | 
Matrix.getColumn(int j)
Returns the jth column of this matrix. | 
 Matrix | 
EigenvalueDecomposition.getD()
Return the block diagonal eigenvalue matrix  | 
 Matrix | 
EigenPair.getEigenvector()
Returns the eigenvector.  | 
 Matrix | 
QRDecomposition.getH()
Return the Householder vectors  | 
 Matrix | 
AffineTransformation.getInverse()
Get a copy of the inverse matrix  | 
 Matrix | 
LUDecomposition.getL()
Return lower triangular factor  | 
 Matrix | 
CholeskyDecomposition.getL()
Return triangular factor.  | 
 Matrix | 
Matrix.getMatrix(int[] r,
          int[] c)
Get a submatrix.  | 
 Matrix | 
Matrix.getMatrix(int[] r,
          int j0,
          int j1)
Get a submatrix.  | 
 Matrix | 
Matrix.getMatrix(int i0,
          int i1,
          int[] c)
Get a submatrix.  | 
 Matrix | 
Matrix.getMatrix(int i0,
          int i1,
          int j0,
          int j1)
Get a submatrix.  | 
 Matrix | 
QRDecomposition.getQ()
Generate and return the (economy-sized) orthogonal factor  | 
 Matrix | 
QRDecomposition.getR()
Return the upper triangular factor  | 
 Matrix | 
Matrix.getRow(int i)
Returns the ith row of this matrix. | 
 Matrix | 
SingularValueDecomposition.getS()
Return the diagonal matrix of singular values  | 
 Matrix | 
AffineTransformation.getTransformation()
Get a copy of the transformation matrix  | 
 Matrix | 
LUDecomposition.getU()
Return upper triangular factor  | 
 Matrix | 
SingularValueDecomposition.getU()
Return the left singular vectors  | 
 Matrix | 
EigenvalueDecomposition.getV()
Return the eigenvector matrix  | 
 Matrix | 
SingularValueDecomposition.getV()
Return the right singular vectors  | 
static Matrix | 
Matrix.identity(int m,
         int n)
Generate identity matrix  | 
 Matrix | 
Matrix.inverse()
Matrix inverse or pseudoinverse  | 
 Matrix | 
Matrix.minus(Matrix B)
C = A - B  | 
 Matrix | 
Matrix.minusEquals(Matrix B)
A = A - B  | 
 Matrix | 
Matrix.orthonormalize()
Returns an orthonormalization of this matrix.  | 
 Matrix | 
Matrix.plus(Matrix B)
C = A + B  | 
 Matrix | 
Matrix.plusEquals(Matrix B)
A = A + B  | 
 Matrix | 
Matrix.projection(Matrix v)
Projects this row vector into the subspace formed by the specified matrix v.  | 
static Matrix | 
Matrix.random(int m,
       int n)
Generate matrix with random elements  | 
static Matrix | 
Matrix.read(BufferedReader input)
Read a matrix from a stream.  | 
 Matrix | 
SortedEigenPairs.reverseEigenVectors(int n)
Returns the last n sorted eigenvectors as a matrix. | 
 Matrix | 
LUDecomposition.solve(Matrix B)
Solve A*X = B  | 
 Matrix | 
QRDecomposition.solve(Matrix B)
Least squares solution of A*X = B  | 
 Matrix | 
Matrix.solve(Matrix B)
Solve A*X = B  | 
 Matrix | 
CholeskyDecomposition.solve(Matrix B)
Solve A*X = B  | 
 Matrix | 
Matrix.solveTranspose(Matrix B)
Solve X*A = B, which is also A'*X' = B'  | 
 Matrix | 
Matrix.times(double s)
Multiply a matrix by a scalar, C = s*A  | 
 Matrix | 
Matrix.times(Matrix B)
Linear algebraic matrix multiplication, A * B  | 
 Matrix | 
Matrix.timesEquals(double s)
Multiply a matrix by a scalar in place, A = s*A  | 
 Matrix | 
Matrix.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T  | 
 Matrix | 
Matrix.transpose()
Matrix transpose.  | 
 Matrix | 
Matrix.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B  | 
 Matrix | 
Matrix.uminus()
Unary minus  | 
static Matrix | 
Matrix.unitMatrix(int dim)
Returns the unit matrix of the specified dimension.  | 
static Matrix | 
Matrix.zeroMatrix(int dim)
Returns the zero matrix of the specified dimension.  | 
| Methods in de.lmu.ifi.dbs.elki.math.linearalgebra with parameters of type Matrix | |
|---|---|
 void | 
AffineTransformation.addMatrix(Matrix m)
Add a matrix operation to the matrix.  | 
 double | 
Matrix.angle(int colA,
      Matrix B,
      int colB)
Returns the angle of the colA col of this and the colB col of B.  | 
 Matrix | 
Matrix.appendColumns(Matrix columns)
Returns a matrix which consists of this matrix and the specified columns.  | 
 Matrix | 
Matrix.arrayLeftDivide(Matrix B)
Element-by-element left division, C = A.  | 
 Matrix | 
Matrix.arrayLeftDivideEquals(Matrix B)
Element-by-element left division in place, A = A.  | 
 Matrix | 
Matrix.arrayRightDivide(Matrix B)
Element-by-element right division, C = A.  | 
 Matrix | 
Matrix.arrayRightDivideEquals(Matrix B)
Element-by-element right division in place, A = A.  | 
 Matrix | 
Matrix.arrayTimes(Matrix B)
Element-by-element multiplication, C = A.  | 
 Matrix | 
Matrix.arrayTimesEquals(Matrix B)
Element-by-element multiplication in place, A = A.  | 
private  void | 
Matrix.checkMatrixDimensions(Matrix B)
Check if size(A) == size(B) *  | 
 double | 
Matrix.distanceCov(Matrix B)
distanceCov returns distance of two Matrices A and B, i.e. the root of the sum of the squared distances Aij-Bij.  | 
 boolean | 
Matrix.linearlyIndependent(Matrix columnMatrix)
Returns true if the specified column matrix a is linearly
 independent to the columns of this matrix. | 
 Matrix | 
Matrix.minus(Matrix B)
C = A - B  | 
 Matrix | 
Matrix.minusEquals(Matrix B)
A = A - B  | 
 Matrix | 
Matrix.plus(Matrix B)
C = A + B  | 
 Matrix | 
Matrix.plusEquals(Matrix B)
A = A + B  | 
 Matrix | 
Matrix.projection(Matrix v)
Projects this row vector into the subspace formed by the specified matrix v.  | 
 double | 
Matrix.scalarProduct(int colA,
              Matrix B,
              int colB)
Returns the scalar product of the colA cols of this and the colB col of B.  | 
 void | 
Matrix.setColumn(int j,
          Matrix column)
Sets the jth column of this matrix to the specified column. | 
 void | 
Matrix.setMatrix(int[] r,
          int[] c,
          Matrix X)
Set a submatrix.  | 
 void | 
Matrix.setMatrix(int[] r,
          int j0,
          int j1,
          Matrix X)
Set a submatrix.  | 
 void | 
Matrix.setMatrix(int i0,
          int i1,
          int[] c,
          Matrix X)
Set a submatrix.  | 
 void | 
Matrix.setMatrix(int i0,
          int i1,
          int j0,
          int j1,
          Matrix X)
Set a submatrix.  | 
 Matrix | 
LUDecomposition.solve(Matrix B)
Solve A*X = B  | 
 Matrix | 
QRDecomposition.solve(Matrix B)
Least squares solution of A*X = B  | 
 Matrix | 
Matrix.solve(Matrix B)
Solve A*X = B  | 
 Matrix | 
CholeskyDecomposition.solve(Matrix B)
Solve A*X = B  | 
 Matrix | 
Matrix.solveTranspose(Matrix B)
Solve X*A = B, which is also A'*X' = B'  | 
 Matrix | 
Matrix.times(Matrix B)
Linear algebraic matrix multiplication, A * B  | 
 Matrix | 
Matrix.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T  | 
 Matrix | 
Matrix.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B  | 
 Vector | 
AffineTransformation.unhomogeneRelativeVector(Matrix v)
Project an homogeneous vector back into the original space.  | 
 Vector | 
AffineTransformation.unhomogeneVector(Matrix v)
Project an homogeneous vector back into the original space.  | 
| Constructors in de.lmu.ifi.dbs.elki.math.linearalgebra with parameters of type Matrix | |
|---|---|
AffineTransformation(int dim,
                     Matrix trans,
                     Matrix inv)
Trivial constructor with all fields, mostly for cloning  | 
|
CholeskyDecomposition(Matrix Arg)
Cholesky algorithm for symmetric and positive definite matrix.  | 
|
EigenPair(Matrix eigenvector,
          double eigenvalue)
Creates a new EigenPair object.  | 
|
EigenvalueDecomposition(Matrix Arg)
Check for symmetry, then construct the eigenvalue decomposition  | 
|
LUDecomposition(Matrix A)
LU Decomposition  | 
|
QRDecomposition(Matrix A)
QR Decomposition, computed by Householder reflections.  | 
|
SingularValueDecomposition(Matrix Arg)
Construct the singular value decomposition  | 
|
| Uses of Matrix in de.lmu.ifi.dbs.elki.math.linearalgebra.pca | 
|---|
| Fields in de.lmu.ifi.dbs.elki.math.linearalgebra.pca declared as Matrix | |
|---|---|
private  Matrix | 
PCAFilteredResult.adapatedStrongEigenvectors
The diagonal matrix of adapted strong eigenvalues: eigenvectors * e_czech.  | 
private  Matrix | 
PCAFilteredResult.e_czech
The selection matrix of the strong eigenvectors.  | 
private  Matrix | 
PCAFilteredResult.e_hat
The selection matrix of the weak eigenvectors.  | 
private  Matrix | 
PCAResult.eigenvectors
The eigenvectors in decreasing order to their corresponding eigenvalues.  | 
private  Matrix | 
PCAFilteredResult.m_czech
The dissimilarity matrix.  | 
private  Matrix | 
PCAFilteredResult.m_hat
The similarity matrix.  | 
private  Matrix | 
PCAFilteredResult.strongEigenvectors
The strong eigenvectors to their corresponding filtered eigenvalues.  | 
private  Matrix | 
PCAFilteredResult.weakEigenvectors
The weak eigenvectors to their corresponding filtered eigenvalues.  | 
| Methods in de.lmu.ifi.dbs.elki.math.linearalgebra.pca that return Matrix | |
|---|---|
 Matrix | 
PCAFilteredResult.adapatedStrongEigenvectors()
Returns a copy of the adapted strong eigenvectors.  | 
 Matrix | 
PCAFilteredResult.dissimilarityMatrix()
Returns a copy of the dissimilarity matrix (M_czech) of this LocalPCA.  | 
 Matrix | 
PCAResult.getEigenvectors()
Returns a copy of the matrix of eigenvectors of the object to which this PCA belongs to.  | 
 Matrix | 
PCAFilteredResult.getStrongEigenvectors()
Returns a copy of the matrix of strong eigenvectors after passing the eigen pair filter.  | 
 Matrix | 
PCAFilteredResult.getWeakEigenvectors()
Returns a copy of the matrix of weak eigenvectors after passing the eigen pair filter.  | 
 Matrix | 
StandardCovarianceMatrixBuilder.processDatabase(Database<V> database)
Compute Covariance Matrix for a complete database  | 
 Matrix | 
CovarianceMatrixBuilder.processDatabase(Database<V> database)
Compute Covariance Matrix for a complete database  | 
 Matrix | 
WeightedCovarianceMatrixBuilder.processIds(Collection<Integer> ids,
           Database<V> database)
Weighted Covariance Matrix for a set of IDs.  | 
 Matrix | 
KernelCovarianceMatrixBuilder.processIds(Collection<Integer> ids,
           Database<V> database)
Returns the local kernel matrix of the specified ids.  | 
 Matrix | 
StandardCovarianceMatrixBuilder.processIds(Collection<Integer> ids,
           Database<V> database)
Compute Covariance Matrix for a collection of database IDs  | 
abstract  Matrix | 
CovarianceMatrixBuilder.processIds(Collection<Integer> ids,
           Database<V> database)
Compute Covariance Matrix for a collection of database IDs  | 
 Matrix | 
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
                    Database<V> database)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds  | 
 Matrix | 
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
                    Database<V> database,
                    int k)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds  | 
 Matrix | 
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
                    Database<V> database,
                    int k)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds  | 
 Matrix | 
PCAFilteredResult.selectionMatrixOfStrongEigenvectors()
Returns a copy of the selection matrix of the strong eigenvectors (E_czech) of this LocalPCA.  | 
 Matrix | 
PCAFilteredResult.selectionMatrixOfWeakEigenvectors()
Returns a copy of the selection matrix of the weak eigenvectors (E_hat) of the object to which this PCA belongs to.  | 
 Matrix | 
PCAFilteredResult.similarityMatrix()
Returns a copy of the similarity matrix (M_hat) of this LocalPCA.  | 
| Methods in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with parameters of type Matrix | |
|---|---|
 PCAFilteredResult | 
PCAFilteredRunner.processCovarMatrix(Matrix covarMatrix)
Process an existing Covariance Matrix  | 
 PCAResult | 
PCARunner.processCovarMatrix(Matrix covarMatrix)
Process an existing covariance Matrix  | 
| Constructors in de.lmu.ifi.dbs.elki.math.linearalgebra.pca with parameters of type Matrix | |
|---|---|
PCAResult(double[] eigenvalues,
          Matrix eigenvectors,
          SortedEigenPairs eigenPairs)
Build a PCA result object.  | 
|
| Uses of Matrix in de.lmu.ifi.dbs.elki.math.statistics | 
|---|
| Fields in de.lmu.ifi.dbs.elki.math.statistics declared as Matrix | |
|---|---|
private  Matrix | 
MultipleLinearRegression.x
The (n x p+1)-matrix holding the x-values, where the i-th row has the form (1 x1i ... x1p).  | 
private  Matrix | 
MultipleLinearRegression.xx_inverse
Holds the matrix (x'x)^-1.  | 
| Methods in de.lmu.ifi.dbs.elki.math.statistics that return Matrix | |
|---|---|
private static Matrix | 
PolynomialRegression.xMatrix(Vector x,
        int p)
 | 
| Methods in de.lmu.ifi.dbs.elki.math.statistics with parameters of type Matrix | |
|---|---|
 double | 
MultipleLinearRegression.estimateY(Matrix x)
Performes an estimatation of y on the specified matrix.  | 
| Constructors in de.lmu.ifi.dbs.elki.math.statistics with parameters of type Matrix | |
|---|---|
MultipleLinearRegression(Vector y,
                         Matrix x)
Provides a new multiple linear regression model with the specified parameters.  | 
|
| Uses of Matrix in de.lmu.ifi.dbs.elki.utilities | 
|---|
| Methods in de.lmu.ifi.dbs.elki.utilities that return Matrix | ||
|---|---|---|
static
 | 
DatabaseUtil.covarianceMatrix(Database<O> database)
Determines the covariance matrix of the objects stored in the given database.  | 
|
static
 | 
DatabaseUtil.covarianceMatrix(Database<O> database,
                 O centroid)
Determines the covariance matrix of the objects stored in the given database w.r.t. the given centroid.  | 
|
static
 | 
DatabaseUtil.covarianceMatrix(Database<V> database,
                 Collection<Integer> ids)
Determines the covariance matrix of the objects stored in the given database.  | 
|
static Matrix | 
DatabaseUtil.covarianceMatrix(Matrix data)
Determines the d x d covariance matrix of the given n x d data matrix.  | 
|
| Methods in de.lmu.ifi.dbs.elki.utilities with parameters of type Matrix | |
|---|---|
static Vector | 
DatabaseUtil.centroid(Matrix data)
Returns the centroid as a Vector object of the specified data matrix.  | 
static Matrix | 
DatabaseUtil.covarianceMatrix(Matrix data)
Determines the d x d covariance matrix of the given n x d data matrix.  | 
  | 
  | 
|||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||||