|
|
|||||||||||||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use Distance | |
---|---|
de.lmu.ifi.dbs.elki.algorithm | Algorithms suitable as a task for the KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms |
de.lmu.ifi.dbs.elki.data | Basic classes for different data types, database object types and label types. |
de.lmu.ifi.dbs.elki.database | ELKI database layer - loading, storing, indexing and accessing data |
de.lmu.ifi.dbs.elki.distance | Distances and (in subpackages) distance functions and similarity functions . |
de.lmu.ifi.dbs.elki.distance.distancefunction | Distance functions for use within ELKI. |
de.lmu.ifi.dbs.elki.distance.similarityfunction | Similarity functions. |
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | Kernel functions. |
de.lmu.ifi.dbs.elki.evaluation.roc | Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve) |
de.lmu.ifi.dbs.elki.index.tree | Tree-based index structures |
de.lmu.ifi.dbs.elki.index.tree.metrical | Tree-based index structures for metrical vector spaces. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants | M-Tree and variants. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees | Metrical index structures based on the concepts of the M-Tree supporting processing of reverse k nearest neighbor queries by using the k-nn distances of the entries. |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | MkMaxTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | MkTabTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | MTree |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split | Splitting strategies of nodes in an M-Tree (and variants). |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.util | Helper classes for the the M-Tree and it's variants. |
de.lmu.ifi.dbs.elki.index.tree.spatial | Tree-based index structures for spatial indexing. |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants | R*-Tree and variants. |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn | RdKNNTree |
de.lmu.ifi.dbs.elki.parser | Parsers for different file formats and data types. |
de.lmu.ifi.dbs.elki.preprocessing | Preprocessors used for data preparation in a first step of various algorithms or distance and similarity measures. |
de.lmu.ifi.dbs.elki.result | Result types, representation and handling |
Uses of Distance in de.lmu.ifi.dbs.elki.algorithm |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm with type parameters of type Distance | |
---|---|
class |
DependencyDerivator<V extends RealVector<V,?>,D extends Distance<D>>
Dependency derivator computes quantitatively linear dependencies among attributes of a given dataset based on a linear correlation PCA. |
class |
DistanceBasedAlgorithm<O extends DatabaseObject,D extends Distance<D>,R extends Result>
Provides an abstract algorithm already setting the distance function. |
class |
KNNDistanceOrder<O extends DatabaseObject,D extends Distance<D>>
Provides an order of the kNN-distances for all objects within the database. |
class |
KNNJoin<V extends NumberVector<V,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Joins in a given spatial database to each object its k-nearest neighbors. |
Uses of Distance in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type Distance | |
---|---|
class |
DBSCAN<O extends DatabaseObject,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database. |
class |
DeLiClu<O extends NumberVector<O,?>,D extends Distance<D>>
DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find density-connected sets in a database. |
class |
KMeans<D extends Distance<D>,V extends RealVector<V,?>>
Provides the k-means algorithm. |
class |
OPTICS<O extends DatabaseObject,D extends Distance<D>>
OPTICS provides the OPTICS algorithm. |
class |
SLINK<O extends DatabaseObject,D extends Distance<D>>
Efficient implementation of the Single-Link Algorithm SLINK of R. |
class |
SNNClustering<O extends DatabaseObject,D extends Distance<D>>
Shared nearest neighbor clustering. |
Fields in de.lmu.ifi.dbs.elki.algorithm.clustering with type parameters of type Distance | |
---|---|
private static AssociationID<Distance<?>> |
SLINK.SLINK_LAMBDA
Association ID for SLINK lambda value |
Uses of Distance in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Classes in de.lmu.ifi.dbs.elki.algorithm.outlier with type parameters of type Distance | |
---|---|
class |
SOD<V extends RealVector<V,Double>,D extends Distance<D>>
|
Uses of Distance in de.lmu.ifi.dbs.elki.data |
---|
Classes in de.lmu.ifi.dbs.elki.data with type parameters of type Distance | |
---|---|
class |
KNNList<D extends Distance<D>>
A wrapper class for storing the k most similar comparable objects. |
Fields in de.lmu.ifi.dbs.elki.data declared as Distance | |
---|---|
private D |
KNNList.infiniteDistance
The infinite distance. |
Uses of Distance in de.lmu.ifi.dbs.elki.database |
---|
Classes in de.lmu.ifi.dbs.elki.database with type parameters of type Distance | |
---|---|
class |
DistanceResultPair<D extends Distance<D>>
Class that consists of a pair (distance, object ID) commonly returned for kNN and range queries. |
class |
MetricalIndexDatabase<O extends DatabaseObject,D extends Distance<D>,N extends MetricalNode<N,E>,E extends MTreeEntry<D>>
MetricalIndexDatabase is a database implementation which is supported by a metrical index structure. |
Methods in de.lmu.ifi.dbs.elki.database with type parameters of type Distance | ||
---|---|---|
|
Database.bulkKNNQueryForID(List<Integer> ids,
int k,
DistanceFunction<O,D> distanceFunction)
Performs k-nearest neighbor queries for the given object IDs. |
|
|
SequentialDatabase.bulkKNNQueryForID(List<Integer> ids,
int k,
DistanceFunction<O,D> distanceFunction)
Retrieves the k nearest neighbors for the query objects. |
|
|
SpatialIndexDatabase.bulkKNNQueryForID(List<Integer> ids,
int k,
DistanceFunction<O,D> distanceFunction)
|
|
|
MetricalIndexDatabase.bulkKNNQueryForID(List<Integer> ids,
int k,
DistanceFunction<O,T> distanceFunction)
|
|
|
Database.kNNQueryForID(Integer id,
int k,
DistanceFunction<O,D> distanceFunction)
Performs a k-nearest neighbor query for the given object ID. |
|
|
SequentialDatabase.kNNQueryForID(Integer id,
int k,
DistanceFunction<O,D> distanceFunction)
Retrieves the k nearest neighbors for the query object. |
|
|
SpatialIndexDatabase.kNNQueryForID(Integer id,
int k,
DistanceFunction<O,D> distanceFunction)
|
|
|
MetricalIndexDatabase.kNNQueryForID(Integer id,
int k,
DistanceFunction<O,T> distanceFunction)
|
|
|
Database.kNNQueryForObject(O queryObject,
int k,
DistanceFunction<O,D> distanceFunction)
Performs a k-nearest neighbor query for the given object. |
|
|
SequentialDatabase.kNNQueryForObject(O queryObject,
int k,
DistanceFunction<O,D> distanceFunction)
Retrieves the k nearest neighbors for the query object. |
|
|
SpatialIndexDatabase.kNNQueryForObject(O queryObject,
int k,
DistanceFunction<O,D> distanceFunction)
|
|
|
MetricalIndexDatabase.kNNQueryForObject(O queryObject,
int k,
DistanceFunction<O,T> distanceFunction)
|
|
|
Database.rangeQuery(Integer id,
String epsilon,
DistanceFunction<O,D> distanceFunction)
Performs a range query for the given object ID with the given epsilon range and the according distance function. |
|
|
SequentialDatabase.rangeQuery(Integer id,
String epsilon,
DistanceFunction<O,D> distanceFunction)
|
|
|
SpatialIndexDatabase.rangeQuery(Integer id,
String epsilon,
DistanceFunction<O,D> distanceFunction)
|
|
|
MetricalIndexDatabase.rangeQuery(Integer id,
String epsilon,
DistanceFunction<O,T> distanceFunction)
|
|
|
Database.reverseKNNQuery(Integer id,
int k,
DistanceFunction<O,D> distanceFunction)
Performs a reverse k-nearest neighbor query for the given object ID. |
|
|
SequentialDatabase.reverseKNNQuery(Integer id,
int k,
DistanceFunction<O,D> distanceFunction)
|
|
|
SpatialIndexDatabase.reverseKNNQuery(Integer id,
int k,
DistanceFunction<O,D> distanceFunction)
Performs a reverse k-nearest neighbor query for the given object ID. |
|
|
MetricalIndexDatabase.reverseKNNQuery(Integer id,
int k,
DistanceFunction<O,T> distanceFunction)
|
Uses of Distance in de.lmu.ifi.dbs.elki.distance |
---|
Classes in de.lmu.ifi.dbs.elki.distance with type parameters of type Distance | |
---|---|
class |
AbstractMeasurementFunction<O extends DatabaseObject,D extends Distance<D>>
Abstract implementation of interface MeasurementFunction that provides some methods
valid for any extending class. |
interface |
Distance<D extends Distance<D>>
The interface Distance defines the requirements of any instance class. |
interface |
MeasurementFunction<O extends DatabaseObject,D extends Distance<D>>
Interface Measurement describes the requirements of any measurement function (e.g. distance function or similarity function), that provides a measurement for comparing database objects. |
interface |
PreprocessorBasedMeasurementFunction<O extends DatabaseObject,P extends Preprocessor<O>,D extends Distance<D>>
Describes the requirements of any measurement function (e.g. distance function or similarity function) needing a preprocessor running on a database. |
Classes in de.lmu.ifi.dbs.elki.distance that implement Distance | |
---|---|
class |
AbstractDistance<D extends AbstractDistance<D>>
An abstract distance implements equals conveniently for any extending class. |
class |
BitDistance
Provides a Distance for a bit-valued distance. |
class |
CorrelationDistance<D extends CorrelationDistance<D>>
The correlation distance is a special Distance that indicates the dissimilarity between correlation connected objects. |
class |
DoubleDistance
Provides a Distance for a double-valued distance. |
class |
FloatDistance
Provides a Distance for a float-valued distance. |
class |
IntegerDistance
|
class |
NumberDistance<D extends NumberDistance<D,N>,N extends Number>
Provides a Distance for a number-valued distance. |
class |
PreferenceVectorBasedCorrelationDistance
A PreferenceVectorBasedCorrelationDistance holds additionally to the CorrelationDistance the common preference vector of the two objects defining the distance. |
class |
SubspaceDistance
The subspace distance is a special distance that indicates the dissimilarity between subspaces of equal dimensionality. |
Methods in de.lmu.ifi.dbs.elki.distance with type parameters of type Distance | ||
---|---|---|
static
|
DistanceUtil.max(D d1,
D d2)
Returns the maximum of the given Distances or the first, if none is greater than the other one. |
|
static
|
DistanceUtil.min(D d1,
D d2)
Returns the minimum of the given Distances or the first, if none is less than the other one. |
Uses of Distance in de.lmu.ifi.dbs.elki.distance.distancefunction |
---|
Classes in de.lmu.ifi.dbs.elki.distance.distancefunction with type parameters of type Distance | |
---|---|
class |
AbstractDistanceFunction<O extends DatabaseObject,D extends Distance<D>>
AbstractDistanceFunction provides some methods valid for any extending class. |
class |
AbstractPreprocessorBasedDistanceFunction<O extends DatabaseObject,P extends Preprocessor<O>,D extends Distance<D>>
Abstract super class for distance functions needing a preprocessor. |
interface |
DistanceFunction<O extends DatabaseObject,D extends Distance<D>>
Interface DistanceFunction describes the requirements of any distance function. |
class |
RepresentationSelectingDistanceFunction<O extends DatabaseObject,M extends MultiRepresentedObject<O>,D extends Distance<D>>
Distance function for multirepresented objects that selects one representation and computes the distances only within the selected representation. |
Uses of Distance in de.lmu.ifi.dbs.elki.distance.similarityfunction |
---|
Classes in de.lmu.ifi.dbs.elki.distance.similarityfunction with type parameters of type Distance | |
---|---|
class |
AbstractPreprocessorBasedSimilarityFunction<O extends DatabaseObject,P extends Preprocessor<O>,D extends Distance<D>>
Abstract super class for distance functions needing a preprocessor. |
class |
AbstractSimilarityFunction<O extends DatabaseObject,D extends Distance<D>>
|
class |
FractionalSharedNearestNeighborSimilarityFunction<O extends DatabaseObject,D extends Distance<D>>
|
interface |
NormalizedSimilarityFunction<O extends DatabaseObject,D extends Distance<D>>
Marker interface to signal that the similarity function is normalized to produce values in the range of [0:1]. |
class |
SharedNearestNeighborSimilarityFunction<O extends DatabaseObject,D extends Distance<D>>
|
interface |
SimilarityFunction<O extends DatabaseObject,D extends Distance<D>>
Interface SimilarityFunction describes the requirements of any similarity function. |
Uses of Distance in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
---|
Classes in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel with type parameters of type Distance | |
---|---|
class |
AbstractKernelFunction<O extends DatabaseObject,D extends Distance<D>>
AbstractKernelFunction provides some methods valid for any extending class. |
interface |
KernelFunction<O extends DatabaseObject,D extends Distance<D>>
Interface Kernel describes the requirements of any kernel function. |
Uses of Distance in de.lmu.ifi.dbs.elki.evaluation.roc |
---|
Classes in de.lmu.ifi.dbs.elki.evaluation.roc with type parameters of type Distance | |
---|---|
static class |
ROC.DistanceResultAdapter<D extends Distance<D>>
This adapter can be used for an arbitrary collection of Integers, and uses that id1.compareTo(id2) ! |
Methods in de.lmu.ifi.dbs.elki.evaluation.roc with type parameters of type Distance | ||
---|---|---|
static
|
ROC.computeROCAUCDistanceResult(int size,
Cluster<?> clus,
List<DistanceResultPair<D>> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster. |
|
static
|
ROC.computeROCAUCDistanceResult(int size,
Collection<Integer> ids,
List<DistanceResultPair<D>> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree with type parameters of type Distance | |
---|---|
class |
DistanceEntry<D extends Distance<D>,E extends Entry>
Helper class: encapsulates an entry in an Index and a distance value belonging to this entry. |
Fields in de.lmu.ifi.dbs.elki.index.tree declared as Distance | |
---|---|
private D |
DistanceEntry.distance
The distance value belonging to the entry. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.metrical |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical with type parameters of type Distance | |
---|---|
class |
MetricalIndex<O extends DatabaseObject,D extends Distance<D>,N extends MetricalNode<N,E>,E extends MetricalEntry>
Abstract super class for all metrical index classes. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants with type parameters of type Distance | |
---|---|
class |
AbstractMTree<O extends DatabaseObject,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>>
Abstract super class for all M-Tree variants. |
class |
AbstractMTreeNode<O extends DatabaseObject,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>>
Abstract super class for nodes in M-Tree variants. |
class |
MTreeDirectoryEntry<D extends Distance<D>>
Represents an entry in a directory node of an M-Tree. |
interface |
MTreeEntry<D extends Distance<D>>
Defines the requirements for an entry in an M-Tree node. |
class |
MTreeLeafEntry<D extends Distance<D>>
Represents an entry in a leaf node of an M-Tree. |
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants declared as Distance | |
---|---|
private D |
MTreeDirectoryEntry.coveringRadius
The covering radius of the entry. |
private D |
MTreeLeafEntry.parentDistance
The distance from the underlying data object to its parent's routing object. |
private D |
MTreeDirectoryEntry.parentDistance
The distance from the routing object of this entry to its parent's routing object. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees with type parameters of type Distance | |
---|---|
class |
AbstractMkTree<O extends DatabaseObject,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>>
Abstract class for all M-Tree variants supporting processing of reverse k-nearest neighbor queries by using the k-nn distances of the entries, where k is less than or equal to the specified parameter AbstractMkTree.K_MAX_PARAM . |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax with type parameters of type Distance | |
---|---|
(package private) class |
MkMaxDirectoryEntry<D extends Distance<D>>
Represents an entry in a directory node of an MkMaxTree . |
(package private) interface |
MkMaxEntry<D extends Distance<D>>
Defines the requirements for an entry in an MkMaxTreeNode . |
(package private) class |
MkMaxLeafEntry<D extends Distance<D>>
Represents an entry in a leaf node of an MkMaxTree . |
class |
MkMaxTree<O extends DatabaseObject,D extends Distance<D>>
MkMaxTree is a metrical index structure based on the concepts of the M-Tree supporting efficient processing of reverse k nearest neighbor queries for parameter k <= k_max. |
(package private) class |
MkMaxTreeNode<O extends DatabaseObject,D extends Distance<D>>
Represents a node in an MkMaxTree . |
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax declared as Distance | |
---|---|
private D |
MkMaxDirectoryEntry.knnDistance
The aggregated k-nearest neighbor distance of the underlying MkMax-Tree node. |
private D |
MkMaxLeafEntry.knnDistance
The k-nearest neighbor distance of the underlying data object. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab with type parameters of type Distance | |
---|---|
(package private) class |
MkTabDirectoryEntry<D extends Distance<D>>
Represents an entry in a directory node of a MkTab-Tree. |
(package private) interface |
MkTabEntry<D extends Distance<D>>
Defines the requirements for an entry in an MkCop-Tree node. |
(package private) class |
MkTabLeafEntry<D extends Distance<D>>
Represents an entry in a leaf node of a MkTab-Tree. |
class |
MkTabTree<O extends DatabaseObject,D extends Distance<D>>
MkTabTree is a metrical index structure based on the concepts of the M-Tree supporting efficient processing of reverse k nearest neighbor queries for parameter k < kmax. |
(package private) class |
MkTabTreeNode<O extends DatabaseObject,D extends Distance<D>>
Represents a node in a MkMax-Tree. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree with type parameters of type Distance | |
---|---|
class |
MTree<O extends DatabaseObject,D extends Distance<D>>
MTree is a metrical index structure based on the concepts of the M-Tree. |
class |
MTreeNode<O extends DatabaseObject,D extends Distance<D>>
Represents a node in an M-Tree. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split with type parameters of type Distance | |
---|---|
class |
Assignments<D extends Distance<D>,E extends MTreeEntry<D>>
Encapsulates the attributes of an assignment during a split. |
class |
MLBDistSplit<O extends DatabaseObject,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>>
Encapsulates the required methods for a split of a node in an M-Tree. |
class |
MRadSplit<O extends DatabaseObject,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>>
Encapsulates the required methods for a split of a node in an M-Tree. |
class |
MTreeSplit<O extends DatabaseObject,D extends Distance<D>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry<D>>
Abstract super class for splitting a node in an M-Tree. |
Fields in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.split declared as Distance | |
---|---|
private D |
Assignments.firstCoveringRadius
The first covering radius. |
private D |
Assignments.secondCoveringRadius
The second covering radius. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.util |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.util with type parameters of type Distance | |
---|---|
class |
PQNode<D extends Distance<D>>
Encapsulates the attributes for a object that can be stored in a heap. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.spatial |
---|
Classes in de.lmu.ifi.dbs.elki.index.tree.spatial with type parameters of type Distance | |
---|---|
interface |
SpatialDistanceFunction<V extends FeatureVector<V,?>,D extends Distance<D>>
Defines the requirements for a distance function that can used in spatial index to measure the dissimilarity between spatial data objects. |
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial with type parameters of type Distance | ||
---|---|---|
abstract
|
SpatialIndex.bulkKNNQueryForIDs(List<Integer> ids,
int k,
SpatialDistanceFunction<O,D> distanceFunction)
Performs a bulk k-nearest neighbor query for the given object IDs. |
|
abstract
|
SpatialIndex.kNNQuery(O obj,
int k,
SpatialDistanceFunction<O,D> distanceFunction)
Performs a k-nearest neighbor query for the given object with the given parameter k and the according distance function. |
|
abstract
|
SpatialIndex.rangeQuery(O obj,
String epsilon,
SpatialDistanceFunction<O,D> distanceFunction)
Performs a range query for the given object with the given epsilon range and the according distance function. |
|
abstract
|
SpatialIndex.reverseKNNQuery(O object,
int k,
SpatialDistanceFunction<O,D> distanceFunction)
Performs a reverse k-nearest neighbor query for the given object ID. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants with type parameters of type Distance | ||
---|---|---|
protected
|
AbstractRStarTree.batchNN(N node,
SpatialDistanceFunction<O,D> distanceFunction,
Map<Integer,KNNList<D>> knnLists)
Performs a batch knn query. |
|
|
AbstractRStarTree.bulkKNNQueryForIDs(List<Integer> ids,
int k,
SpatialDistanceFunction<O,D> distanceFunction)
Performs a bulk k-nearest neighbor query for the given object IDs. |
|
protected
|
AbstractRStarTree.doKNNQuery(Object object,
SpatialDistanceFunction<O,D> distanceFunction,
KNNList<D> knnList)
Performs a k-nearest neighbor query for the given NumberVector with the given parameter k and the according distance function. |
|
protected
|
AbstractRStarTree.getSortedEntries(N node,
Collection<Integer> ids,
SpatialDistanceFunction<O,D> distanceFunction)
Sorts the entries of the specified node according to their minimum distance to the specified objects. |
|
protected
|
AbstractRStarTree.getSortedEntries(N node,
Integer q,
SpatialDistanceFunction<O,D> distanceFunction)
Sorts the entries of the specified node according to their minimum distance to the specified object. |
|
protected
|
AbstractRStarTreeNode.initReInsert(int start,
DistanceEntry<D,E>[] reInsertEntries)
Initializes a reinsert operation. |
|
|
AbstractRStarTree.kNNQuery(O object,
int k,
SpatialDistanceFunction<O,D> distanceFunction)
Performs a k-nearest neighbor query for the given NumberVector with the given parameter k and the according distance function. |
|
|
AbstractRStarTree.rangeQuery(O object,
String epsilon,
SpatialDistanceFunction<O,D> distanceFunction)
Performs a range query for the given spatial object with the given epsilon range and the according distance function. |
|
|
AbstractRStarTree.reverseKNNQuery(O object,
int k,
SpatialDistanceFunction<O,D> distanceFunction)
Performs a reverse k-nearest neighbor query for the given object ID. |
Uses of Distance in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn |
---|
Methods in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn with type parameters of type Distance | ||
---|---|---|
|
RdKNNTree.reverseKNNQuery(O object,
int k,
SpatialDistanceFunction<O,T> distanceFunction)
Performs a reverse k-nearest neighbor query for the given object ID. |
Uses of Distance in de.lmu.ifi.dbs.elki.parser |
---|
Classes in de.lmu.ifi.dbs.elki.parser with type parameters of type Distance | |
---|---|
interface |
DistanceParser<O extends DatabaseObject,D extends Distance<D>>
A DistanceParser shall provide a DistanceParsingResult by parsing an InputStream. |
class |
DistanceParsingResult<O extends DatabaseObject,D extends Distance<D>>
Provides a list of database objects and labels associated with these objects and a cache of precomputed distances between the database objects. |
Uses of Distance in de.lmu.ifi.dbs.elki.preprocessing |
---|
Classes in de.lmu.ifi.dbs.elki.preprocessing with type parameters of type Distance | |
---|---|
class |
FourCPreprocessor<D extends Distance<D>,V extends RealVector<V,?>>
Preprocessor for 4C local dimensionality and locally weighted matrix assignment to objects of a certain database. |
class |
MaterializeKNNPreprocessor<O extends DatabaseObject,D extends Distance<D>>
A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object. |
class |
PreDeConPreprocessor<D extends Distance<D>,V extends RealVector<V,?>>
Preprocessor for PreDeCon local dimensionality and locally weighted matrix assignment to objects of a certain database. |
class |
ProjectedDBSCANPreprocessor<D extends Distance<D>,V extends RealVector<V,?>>
Abstract superclass for preprocessor of algorithms extending the ProjectedDBSCAN algorithm. |
class |
SharedNearestNeighborsPreprocessor<O extends DatabaseObject,D extends Distance<D>>
A preprocessor for annotation of the ids of nearest neighbors to each database object. |
class |
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector<O,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object. |
Uses of Distance in de.lmu.ifi.dbs.elki.result |
---|
Classes in de.lmu.ifi.dbs.elki.result with type parameters of type Distance | |
---|---|
class |
ClusterOrderEntry<D extends Distance<D>>
Provides an entry in a cluster order. |
class |
ClusterOrderResult<D extends Distance<D>>
Class to store the result of an ordering clustering algorithm such as OPTICS. |
class |
KNNDistanceOrderResult<D extends Distance<D>>
Wraps a list containing the knn distances. |
Fields in de.lmu.ifi.dbs.elki.result declared as Distance | |
---|---|
private D |
ClusterOrderEntry.reachability
The reachability of the entry. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |