|
|
|||||||||||||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable
de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<O,R>
de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm<V,D,Clustering<Model>>
de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans<D,V>
D
- a type of Distance
as returned by the used distance functionV
- a type of RealVector
as a suitable datatype for this algorithmpublic class KMeans<D extends Distance<D>,V extends RealVector<V,?>>
Provides the k-means algorithm.
Reference:
J. McQueen: Some Methods for Classification and Analysis of Multivariate Observations.
In 5th Berkeley Symp. Math. Statist. Prob., Vol. 1, 1967, pp 281-297.
Field Summary | |
---|---|
private int |
k
Holds the value of K_PARAM . |
static OptionID |
K_ID
OptionID for K_PARAM |
private IntParameter |
K_PARAM
Parameter to specify the number of clusters to find, must be an integer greater than 0. |
private Clustering<Model> |
result
Keeps the result. |
Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
---|
DISTANCE_FUNCTION_ID, DISTANCE_FUNCTION_PARAM |
Fields inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
---|
optionHandler |
Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debug, logger |
Constructor Summary | |
---|---|
KMeans()
Provides the k-means algorithm, adding parameter K_PARAM
to the option handler
additionally to parameters of super class. |
Method Summary | |
---|---|
Description |
getDescription()
Returns a description of the algorithm. |
Clustering<Model> |
getResult()
Retrieve the result. |
protected List<V> |
means(List<List<Integer>> clusters,
List<V> means,
Database<V> database)
Returns the mean vectors of the given clusters in the given database. |
protected Clustering<Model> |
runInTime(Database<V> database)
Performs the k-means algorithm on the given database. |
List<String> |
setParameters(List<String> args)
Calls the super method and sets additionally the value of the parameter K_PARAM . |
protected List<List<Integer>> |
sort(List<V> means,
Database<V> database)
Returns a list of clusters. |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
---|
getDistanceFunction |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
isTime, isVerbose, run, setTime, setVerbose |
Methods inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
---|
addOption, addParameterizable, addParameterizable, checkGlobalParameterConstraints, collectOptions, getAttributeSettings, getParameters, rememberParametersExcept, removeOption, removeParameterizable, shortDescription |
Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debugFine, debugFiner, debugFinest, exception, progress, verbose, warning |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
---|
run |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.Algorithm |
---|
setTime, setVerbose |
Methods inherited from interface de.lmu.ifi.dbs.elki.utilities.optionhandling.Parameterizable |
---|
checkGlobalParameterConstraints, collectOptions, getParameters, shortDescription |
Field Detail |
---|
public static final OptionID K_ID
K_PARAM
private final IntParameter K_PARAM
Key: -kmeans.k
private int k
K_PARAM
.
private Clustering<Model> result
Constructor Detail |
---|
public KMeans()
K_PARAM
to the option handler
additionally to parameters of super class.
Method Detail |
---|
public Description getDescription()
Algorithm
getDescription
in interface Algorithm<V extends RealVector<V,?>,Clustering<Model>>
public Clustering<Model> getResult()
ClusteringAlgorithm
getResult
in interface Algorithm<V extends RealVector<V,?>,Clustering<Model>>
getResult
in interface ClusteringAlgorithm<Clustering<Model>,V extends RealVector<V,?>>
protected Clustering<Model> runInTime(Database<V> database) throws IllegalStateException
runInTime
in class AbstractAlgorithm<V extends RealVector<V,?>,Clustering<Model>>
database
- the database to run the algorithm on
IllegalStateException
- if the algorithm has not been initialized
properly (e.g. the setParameters(String[]) method has been failed
to be called).protected List<V> means(List<List<Integer>> clusters, List<V> means, Database<V> database)
clusters
- the clusters to compute the meansmeans
- the recent meansdatabase
- the database containing the vectors
protected List<List<Integer>> sort(List<V> means, Database<V> database)
means
- a list of k meansdatabase
- the database to cluster
public List<String> setParameters(List<String> args) throws ParameterException
K_PARAM
.
setParameters
in interface Parameterizable
setParameters
in class DistanceBasedAlgorithm<V extends RealVector<V,?>,D extends Distance<D>,Clustering<Model>>
args
- parameters to set the attributes accordingly to
ParameterException
- in case of wrong parameter-setting
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |