@Reference(authors="J. Gao, P.-N. Tan", title="Converting Output Scores from Outlier Detection Algorithms into Probability Estimates", booktitle="Proc. Sixth International Conference on Data Mining, 2006. ICDM\'06.", url="https://doi.org/10.1109/ICDM.2006.43", bibkey="DBLP:conf/icdm/GaoT06") @Alias(value="de.lmu.ifi.dbs.elki.utilities.scaling.outlier.SigmoidOutlierScalingFunction") public class SigmoidOutlierScaling extends java.lang.Object implements OutlierScaling
Reference:
J. Gao, P.-N. Tan
Converting Output Scores from Outlier Detection Algorithms into Probability
Estimates
Proc. Sixth International Conference on Data Mining, 2006. ICDM'06.
Modifier and Type | Field and Description |
---|---|
(package private) double |
Afinal
Sigmoid parameter
|
(package private) double |
Bfinal
Sigmoid parameter
|
private static Logging |
LOG
The logger for this class.
|
Constructor and Description |
---|
SigmoidOutlierScaling() |
Modifier and Type | Method and Description |
---|---|
double |
getMax()
Get maximum resulting value.
|
double |
getMin()
Get minimum resulting value.
|
double |
getScaled(double value)
Transform a given value using the scaling function.
|
private double[] |
MStepLevenbergMarquardt(double a,
double b,
ArrayDBIDs ids,
long[] t,
DoubleRelation scores)
M-Step using a modified Levenberg-Marquardt method.
|
private <A> double[] |
MStepLevenbergMarquardt(double a,
double b,
long[] t,
A array,
NumberArrayAdapter<?,A> adapter)
M-Step using a modified Levenberg-Marquardt method.
|
<A> void |
prepare(A array,
NumberArrayAdapter<?,A> adapter)
Prepare is called once for each data set, before getScaled() will be
called.
|
void |
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
called.
|
private static final Logging LOG
double Afinal
double Bfinal
public void prepare(OutlierResult or)
OutlierScaling
prepare
in interface OutlierScaling
or
- Outlier result to usepublic <A> void prepare(A array, NumberArrayAdapter<?,A> adapter)
OutlierScaling
OutlierResult
is preferred, as it will
allow access to the metadata.prepare
in interface OutlierScaling
array
- Data to processadapter
- Array adapterprivate double[] MStepLevenbergMarquardt(double a, double b, ArrayDBIDs ids, long[] t, DoubleRelation scores)
Implementation based on:
H.-T. Lin, C.-J. Lin, R. C. Weng:
A Note on Platt’s Probabilistic Outputs for Support Vector Machines
a
- A parameterb
- B parameterids
- Ids to processt
- Bitset containing the assignmentscores
- Scoresprivate <A> double[] MStepLevenbergMarquardt(double a, double b, long[] t, A array, NumberArrayAdapter<?,A> adapter)
Implementation based on:
H.-T. Lin, C.-J. Lin, R. C. Weng:
A Note on Platt’s Probabilistic Outputs for Support Vector Machines
a
- A parameterb
- B parametert
- Bitset containing the assignmentarray
- Score arrayadapter
- Array adapterpublic double getMax()
ScalingFunction
Double.NaN
or
Double.POSITIVE_INFINITY
.getMax
in interface ScalingFunction
public double getMin()
ScalingFunction
Double.NaN
or
Double.NEGATIVE_INFINITY
.getMin
in interface ScalingFunction
public double getScaled(double value)
ScalingFunction
getScaled
in interface ScalingFunction
value
- Original valueCopyright © 2019 ELKI Development Team. License information.