@Reference(authors="Hans-Peter Kriegel, Peer Kr\u00f6ger, Erich Schubert, Arthur Zimek", title="Interpreting and Unifying Outlier Scores", booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM 2011)", url="https://doi.org/10.1137/1.9781611972818.2", bibkey="DBLP:conf/sdm/KriegelKSZ11") public class MinusLogStandardDeviationScaling extends StandardDeviationScaling
Transformation is done using the formula \(\max\{0, \mathrm{erf}(\lambda \frac{x-\mu}{\sigma\sqrt{2}})\}\)
Where mean can be fixed to a given value, and stddev is then computed against this mean.
Reference:
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Interpreting and Unifying Outlier Scores
Proc. 11th SIAM International Conference on Data Mining (SDM 2011)
Modifier and Type | Class and Description |
---|---|
static class |
MinusLogStandardDeviationScaling.Parameterizer
Parameterization class.
|
factor, fixedmean, lambda, mean
Constructor and Description |
---|
MinusLogStandardDeviationScaling(double fixedmean,
double lambda)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
double |
getScaled(double value)
Transform a given value using the scaling function.
|
void |
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
called.
|
getMax, getMin, prepare
public MinusLogStandardDeviationScaling(double fixedmean, double lambda)
fixedmean
- Fixed meanlambda
- Scaling factor lambdapublic double getScaled(double value)
ScalingFunction
getScaled
in interface ScalingFunction
getScaled
in class StandardDeviationScaling
value
- Original valuepublic void prepare(OutlierResult or)
OutlierScaling
prepare
in interface OutlierScaling
prepare
in class StandardDeviationScaling
or
- Outlier result to useCopyright © 2019 ELKI Development Team. License information.