public final class TriangularKernelDensityFunction extends java.lang.Object implements KernelDensityFunction
Modifier and Type | Class and Description |
---|---|
static class |
TriangularKernelDensityFunction.Parameterizer
Parameterization stub.
|
Modifier and Type | Field and Description |
---|---|
static double |
CANONICAL_BANDWIDTH
Canonical bandwidth.
|
static TriangularKernelDensityFunction |
KERNEL
Static instance.
|
private static double |
R
R constant.
|
private static double |
STDDEV
Standard deviation.
|
Modifier | Constructor and Description |
---|---|
private |
TriangularKernelDensityFunction()
Private, empty constructor.
|
Modifier and Type | Method and Description |
---|---|
double |
canonicalBandwidth()
Get the canonical bandwidth for this kernel.
|
double |
density(double delta)
Density contribution of a point at the given relative distance
delta >= 0 . |
double |
getR()
Get the R integral of the kernel, \int K^2(x) dx
TODO: any better name for this?
|
double |
standardDeviation()
Get the standard deviation of the kernel function.
|
public static final TriangularKernelDensityFunction KERNEL
public static final double CANONICAL_BANDWIDTH
private static final double STDDEV
private static final double R
private TriangularKernelDensityFunction()
public double density(double delta)
KernelDensityFunction
delta >= 0
.
Note that for delta < 0
, in particular for delta < 1
, the
results may become invalid. So usually, you will want to invoke this as:
kernel.density(Math.abs(delta))
density
in interface KernelDensityFunction
delta
- Relative distancepublic double canonicalBandwidth()
KernelDensityFunction
Note: R uses a different definition of "canonical bandwidth", and also uses differently scaled kernels.
canonicalBandwidth
in interface KernelDensityFunction
public double standardDeviation()
KernelDensityFunction
standardDeviation
in interface KernelDensityFunction
public double getR()
KernelDensityFunction
TODO: any better name for this?
getR
in interface KernelDensityFunction
Copyright © 2019 ELKI Development Team. License information.