@Priority(value=-100) @Reference(authors="Elke Achtert, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek",title="Interactive Data Mining with 3D-Parallel-Coordinate-Trees",booktitle="Proc. 2013 ACM Int. Conf. on Management of Data (SIGMOD 2013)",url="https://doi.org/10.1145/2463676.2463696",bibkey="DBLP:conf/sigmod/AchtertKSZ13") @Reference(authors="Christian Baumgartner, Claudia Plant, Karin Kailing, Hans-Peter Kriegel, Peer Kr\u00f6ger",title="Subspace Selection for Clustering High-Dimensional Data",booktitle="Proc. IEEE International Conference on Data Mining (ICDM 2004)",url="https://doi.org/10.1109/ICDM.2004.10112",bibkey="DBLP:conf/icdm/BaumgartnerPKKK04") public class SURFINGDependenceMeasure extends AbstractDependenceMeasure
Note that the complexity is roughly O(n n k), so this is a rather slow method, and with k at 10% of n, is actually cubic: O(0.1 * n²).
This version cannot use index support, as the API operates without database attachment. However, it should be possible to implement some trivial sorted-list indexes to get a reasonable speedup!
Reference:
Elke Achtert, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek
Interactive Data Mining with 3D-Parallel-Coordinate-Trees
Proc. 2013 ACM Int. Conf. on Management of Data (SIGMOD 2013)
Based on:
Christian Baumgartner, Claudia Plant, Karin Kailing, Hans-Peter Kriegel,
Peer Kröger
Subspace Selection for Clustering High-Dimensional Data
Proc. IEEE International Conference on Data Mining (ICDM 2004)
TODO: make the subspace distance function and k parameterizable.
TODO: results are not convincing, maybe try inserting points.
Modifier and Type | Class and Description |
---|---|
static class |
SURFINGDependenceMeasure.Parameterizer
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
static SURFINGDependenceMeasure |
STATIC
Static instance.
|
Modifier | Constructor and Description |
---|---|
protected |
SURFINGDependenceMeasure()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<A,B> double |
dependence(NumberArrayAdapter<?,A> adapter1,
A data1,
NumberArrayAdapter<?,B> adapter2,
B data2)
Measure the dependence of two variables.
|
clamp, computeNormalizedRanks, discretize, index, ranks, ranks, size, size, sortedIndex
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
dependence, dependence, dependence
public static final SURFINGDependenceMeasure STATIC
protected SURFINGDependenceMeasure()
public <A,B> double dependence(NumberArrayAdapter<?,A> adapter1, A data1, NumberArrayAdapter<?,B> adapter2, B data2)
DependenceMeasure
A
- First array typeB
- Second array typeadapter1
- First data adapterdata1
- First data setadapter2
- Second data adapterdata2
- Second data setCopyright © 2019 ELKI Development Team. License information.