@Reference(authors="D. Guo", title="Coordinating computational and visual approaches for interactive feature selection and multivariate clustering", booktitle="Information Visualization, 2(4)", url="https://doi.org/10.1057/palgrave.ivs.9500053", bibkey="DBLP:journals/ivs/Guo03") public class MCEDependenceMeasure extends AbstractDependenceMeasure
Reference:
D. Guo
Coordinating computational and visual approaches for interactive feature
selection and multivariate clustering
Information Visualization, 2(4), 2003.
Modifier and Type | Class and Description |
---|---|
static class |
MCEDependenceMeasure.Parameterizer
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
static MCEDependenceMeasure |
STATIC
Static instance.
|
static int |
TARGET
Desired size: 35 observations.
|
Constructor and Description |
---|
MCEDependenceMeasure() |
Modifier and Type | Method and Description |
---|---|
private <A> java.util.ArrayList<int[]> |
buildPartitions(NumberArrayAdapter<?,A> adapter1,
A data1,
int len,
int depth)
Partitions an attribute.
|
<A,B> double |
dependence(NumberArrayAdapter<?,A> adapter1,
A data1,
NumberArrayAdapter<?,B> adapter2,
B data2)
Measure the dependence of two variables.
|
private void |
divide(int[] idx,
double[] data,
java.util.ArrayList<int[]> ret,
int start,
int end,
int depth)
Recursive call to further subdivide the array.
|
private double |
getMCEntropy(int[][] mat,
java.util.ArrayList<int[]> partsx,
java.util.ArrayList<int[]> partsy,
int size,
int gridsize,
double loggrid)
Compute the MCE entropy value.
|
private void |
intersectionMatrix(int[][] res,
java.util.ArrayList<int[]> partsx,
java.util.ArrayList<int[]> partsy,
int gridsize)
Intersect the two 1d grid decompositions, to obtain a 2d matrix.
|
private int |
intersectionSize(int[] px,
int[] py)
Compute the intersection of two sorted integer lists.
|
clamp, computeNormalizedRanks, discretize, index, ranks, ranks, size, size, sortedIndex
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
dependence, dependence, dependence
public static final MCEDependenceMeasure STATIC
public static final int TARGET
public <A,B> double dependence(NumberArrayAdapter<?,A> adapter1, A data1, NumberArrayAdapter<?,B> adapter2, B data2)
DependenceMeasure
A
- First array typeB
- Second array typeadapter1
- First data adapterdata1
- First data setadapter2
- Second data adapterdata2
- Second data setprivate <A> java.util.ArrayList<int[]> buildPartitions(NumberArrayAdapter<?,A> adapter1, A data1, int len, int depth)
adapter1
- Data adapterdata1
- Data setlen
- Length of datadepth
- Splitting depthprivate void divide(int[] idx, double[] data, java.util.ArrayList<int[]> ret, int start, int end, int depth)
idx
- Object indexes.data
- 1D data, sortedret
- Output indexstart
- Interval startend
- Interval enddepth
- Depthprivate void intersectionMatrix(int[][] res, java.util.ArrayList<int[]> partsx, java.util.ArrayList<int[]> partsy, int gridsize)
res
- Output matrix to fillpartsx
- Partitions in first componentpartsy
- Partitions in second component.gridsize
- Size of partition decompositionprivate int intersectionSize(int[] px, int[] py)
px
- First listpy
- Second listprivate double getMCEntropy(int[][] mat, java.util.ArrayList<int[]> partsx, java.util.ArrayList<int[]> partsy, int size, int gridsize, double loggrid)
mat
- Partition size matrixpartsx
- Partitions on Xpartsy
- Partitions on Ysize
- Data set sizegridsize
- Size of gridsloggrid
- Logarithm of grid sizes, for normalizationCopyright © 2019 ELKI Development Team. License information.