| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.outlier.clustering | 
 Clustering based outlier detection. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.clustering.internal | 
 Internal evaluation measures for clusterings. 
 | 
| Class and Description | 
|---|
| NoiseHandling
 Options for handling noise in internal measures. 
 | 
| Class and Description | 
|---|
| EvaluateCIndex
 Compute the C-index of a data set. 
 | 
| EvaluateConcordantPairs
 Compute the Gamma Criterion of a data set. 
 | 
| EvaluateDaviesBouldin
 Compute the Davies-Bouldin index of a data set. 
 | 
| EvaluateDBCV
 Compute the Density-Based Clustering Validation Index. 
 | 
| EvaluatePBMIndex
 Compute the PBM index of a clustering
 
 Reference:
 
 M. 
 | 
| EvaluateSilhouette
 Compute the silhouette of a data set. 
 | 
| EvaluateSimplifiedSilhouette
 Compute the simplified silhouette of a data set. 
 | 
| EvaluateSquaredErrors
 Evaluate a clustering by reporting the squared errors (SSE, SSQ), as used by
 k-means. 
 | 
| EvaluateVarianceRatioCriteria
 Compute the Variance Ratio Criteria of a data set, also known as
 Calinski-Harabasz index. 
 | 
| NoiseHandling
 Options for handling noise in internal measures. 
 | 
Copyright © 2019 ELKI Development Team. License information.