Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
Class and Description |
---|
NoiseHandling
Options for handling noise in internal measures.
|
Class and Description |
---|
EvaluateCIndex
Compute the C-index of a data set.
|
EvaluateConcordantPairs
Compute the Gamma Criterion of a data set.
|
EvaluateDaviesBouldin
Compute the Davies-Bouldin index of a data set.
|
EvaluateDBCV
Compute the Density-Based Clustering Validation Index.
|
EvaluatePBMIndex
Compute the PBM index of a clustering
Reference:
M.
|
EvaluateSilhouette
Compute the silhouette of a data set.
|
EvaluateSimplifiedSilhouette
Compute the simplified silhouette of a data set.
|
EvaluateSquaredErrors
Evaluate a clustering by reporting the squared errors (SSE, SSQ), as used by
k-means.
|
EvaluateVarianceRatioCriteria
Compute the Variance Ratio Criteria of a data set, also known as
Calinski-Harabasz index.
|
NoiseHandling
Options for handling noise in internal measures.
|
Copyright © 2019 ELKI Development Team. License information.