Modifier and Type | Method and Description |
---|---|
private java.util.List<KNNHeap> |
KNNJoin.initHeaps(SpatialPrimitiveDistanceFunction<V> distFunction,
N pr)
Initialize the heaps.
|
private void |
KNNJoin.processDataPages(SpatialPrimitiveDistanceFunction<? super V> df,
java.util.List<KNNHeap> pr_heaps,
java.util.List<KNNHeap> ps_heaps,
N pr,
N ps)
Processes the two data pages pr and ps and determines the k-nearest
neighbors of pr in ps.
|
Modifier and Type | Method and Description |
---|---|
private void |
DeLiClu.expandDirNodes(SpatialPrimitiveDistanceFunction<V> distFunction,
DeLiCluNode node1,
DeLiCluNode node2)
Expands the specified directory nodes.
|
private void |
DeLiClu.expandLeafNodes(SpatialPrimitiveDistanceFunction<V> distFunction,
DeLiCluNode node1,
DeLiCluNode node2,
DataStore<KNNList> knns)
Expands the specified leaf nodes.
|
private void |
DeLiClu.expandNodes(DeLiCluTree index,
SpatialPrimitiveDistanceFunction<V> distFunction,
DeLiClu.SpatialObjectPair nodePair,
DataStore<KNNList> knns)
Expands the spatial nodes of the specified pair.
|
private void |
DeLiClu.reinsertExpanded(SpatialPrimitiveDistanceFunction<V> distFunction,
DeLiCluTree index,
IndexTreePath<DeLiCluEntry> path,
DataStore<KNNList> knns)
Reinserts the objects of the already expanded nodes.
|
private void |
DeLiClu.reinsertExpanded(SpatialPrimitiveDistanceFunction<V> distFunction,
DeLiCluTree index,
java.util.List<IndexTreePath<DeLiCluEntry>> path,
int pos,
DeLiCluEntry parentEntry,
DataStore<KNNList> knns) |
Modifier and Type | Field and Description |
---|---|
protected SpatialPrimitiveDistanceFunction<? super V> |
SpatialPrimitiveDistanceQuery.distanceFunction
The distance function we use.
|
Modifier and Type | Method and Description |
---|---|
SpatialPrimitiveDistanceFunction<? super V> |
SpatialPrimitiveDistanceQuery.getDistanceFunction() |
SpatialPrimitiveDistanceFunction<? super V> |
SpatialDistanceQuery.getDistanceFunction()
Get the inner distance function.
|
Constructor and Description |
---|
SpatialPrimitiveDistanceQuery(Relation<? extends V> relation,
SpatialPrimitiveDistanceFunction<? super V> distanceFunction) |
SpatialPrimitiveDistanceSimilarityQuery(Relation<? extends O> relation,
SpatialPrimitiveDistanceFunction<? super O> distanceFunction,
PrimitiveSimilarityFunction<? super O> similarityFunction)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
ArcCosineDistanceFunction
Arcus cosine distance function for feature vectors.
|
class |
ArcCosineUnitlengthDistanceFunction
Arcus cosine distance function for feature vectors.
|
class |
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
vector spaces (not only binary data).
|
class |
CanberraDistanceFunction
Canberra distance function, a variation of Manhattan distance.
|
class |
ClarkDistanceFunction
Clark distance function for vector spaces.
|
class |
CosineDistanceFunction
Cosine distance function for feature vectors.
|
class |
CosineUnitlengthDistanceFunction
Cosine distance function for unit length feature vectors.
|
class |
WeightedCanberraDistanceFunction
Weighted Canberra distance function, a variation of Manhattan distance.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramIntersectionDistanceFunction
Intersection distance for color histograms.
|
Modifier and Type | Class and Description |
---|---|
class |
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramMatchDistanceFunction
Distance function based on histogram matching, i.e., Manhattan distance on
the cumulative density function.
|
Modifier and Type | Class and Description |
---|---|
class |
EuclideanDistanceFunction
Euclidean distance for
NumberVector s. |
class |
LPIntegerNormDistanceFunction
Lp-Norm for
NumberVector s, optimized version for integer
values of p. |
class |
LPNormDistanceFunction
Lp-Norm (Minkowski norms) are a family of distances for
NumberVector s. |
class |
ManhattanDistanceFunction
Manhattan distance for
NumberVector s. |
class |
MaximumDistanceFunction
Maximum distance for
NumberVector s. |
class |
MinimumDistanceFunction
Minimum distance for
NumberVector s. |
class |
SquaredEuclideanDistanceFunction
Squared Euclidean distance, optimized for
SparseNumberVector s. |
class |
WeightedEuclideanDistanceFunction
Weighted Euclidean distance for
NumberVector s. |
class |
WeightedLPNormDistanceFunction
Weighted version of the Minkowski Lp norm distance for
NumberVector . |
class |
WeightedManhattanDistanceFunction
Weighted version of the Manhattan (L1) metric.
|
class |
WeightedMaximumDistanceFunction
Weighted version of the maximum distance function for
NumberVector s. |
class |
WeightedSquaredEuclideanDistanceFunction
Weighted squared Euclidean distance for
NumberVector s. |
Modifier and Type | Class and Description |
---|---|
class |
ChiDistanceFunction
χ distance function, symmetric version.
|
class |
ChiSquaredDistanceFunction
χ² distance function, symmetric version.
|
class |
FisherRaoDistanceFunction
Fisher-Rao riemannian metric for (discrete) probability distributions.
|
class |
HellingerDistanceFunction
Hellinger metric / affinity / kernel, Bhattacharyya coefficient, fidelity
similarity, Matusita distance, Hellinger-Kakutani metric on a probability
distribution.
|
class |
JeffreyDivergenceDistanceFunction
Jeffrey Divergence for
NumberVector s is a symmetric, smoothened
version of the KullbackLeiblerDivergenceAsymmetricDistanceFunction . |
class |
JensenShannonDivergenceDistanceFunction
Jensen-Shannon Divergence for
NumberVector s is a symmetric,
smoothened version of the
KullbackLeiblerDivergenceAsymmetricDistanceFunction . |
class |
SqrtJensenShannonDivergenceDistanceFunction
The square root of Jensen-Shannon divergence is a metric.
|
class |
TriangularDiscriminationDistanceFunction
Triangular Discrimination has relatively tight upper and lower bounds to the
Jensen-Shannon divergence, but is much less expensive.
|
class |
TriangularDistanceFunction
Triangular Distance has relatively tight upper and lower bounds to the
(square root of the) Jensen-Shannon divergence, but is much less expensive.
|
Modifier and Type | Class and Description |
---|---|
class |
OnedimensionalDistanceFunction
Distance function that computes the distance between feature vectors as the
absolute difference of their values in a specified dimension only.
|
class |
SubspaceEuclideanDistanceFunction
Euclidean distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceLPNormDistanceFunction
Lp-Norm distance function between
NumberVector s only in
specified dimensions. |
class |
SubspaceManhattanDistanceFunction
Manhattan distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceMaximumDistanceFunction
Maximum distance function between
NumberVector s only in specified
dimensions. |
Modifier and Type | Class and Description |
---|---|
class |
Kulczynski1SimilarityFunction
Kulczynski similarity 1.
|
Modifier and Type | Field and Description |
---|---|
protected SpatialPrimitiveDistanceFunction<? super O> |
RStarTreeKNNQuery.distanceFunction
Spatial primitive distance function.
|
protected SpatialPrimitiveDistanceFunction<? super O> |
RStarTreeRangeQuery.distanceFunction
Spatial primitive distance function
|
Constructor and Description |
---|
RStarTreeKNNQuery(AbstractRStarTree<?,?,?> tree,
Relation<? extends O> relation,
SpatialPrimitiveDistanceFunction<? super O> distanceFunction)
Constructor.
|
RStarTreeRangeQuery(AbstractRStarTree<?,?,?> tree,
Relation<? extends O> relation,
SpatialPrimitiveDistanceFunction<? super O> distanceFunction)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) SpatialPrimitiveDistanceFunction<NumberVector> |
RdkNNSettings.distanceFunction
The distance function.
|
Modifier and Type | Method and Description |
---|---|
java.util.List<ModifiableDoubleDBIDList> |
RdKNNTree.bulkReverseKNNQueryForID(DBIDs ids,
int k,
SpatialPrimitiveDistanceFunction<? super O> distanceFunction,
KNNQuery<O> knnQuery) |
private void |
RdKNNTree.checkDistanceFunction(SpatialPrimitiveDistanceFunction<? super O> distanceFunction)
Throws an IllegalArgumentException if the specified distance function is
not an instance of the distance function used by this index.
|
protected java.util.List<DoubleObjPair<RdKNNEntry>> |
RdKNNTree.getSortedEntries(AbstractRStarTreeNode<?,?> node,
SpatialComparable q,
SpatialPrimitiveDistanceFunction<?> distanceFunction)
Sorts the entries of the specified node according to their minimum distance
to the specified object.
|
DoubleDBIDList |
RdKNNTree.reverseKNNQuery(DBID oid,
int k,
SpatialPrimitiveDistanceFunction<? super O> distanceFunction,
KNNQuery<O> knnQuery) |
Constructor and Description |
---|
RdkNNSettings(int k_max,
SpatialPrimitiveDistanceFunction<NumberVector> distanceFunction)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) SpatialPrimitiveDistanceFunction<?> |
AbstractPartialReinsert.distanceFunction
Distance function to use for measuring
|
(package private) SpatialPrimitiveDistanceFunction<?> |
AbstractPartialReinsert.Parameterizer.distanceFunction
Distance function to use for measuring
|
Constructor and Description |
---|
AbstractPartialReinsert(double reinsertAmount,
SpatialPrimitiveDistanceFunction<?> distanceFunction)
Constructor.
|
CloseReinsert(double reinsertAmount,
SpatialPrimitiveDistanceFunction<?> distanceFunction)
Constructor.
|
FarReinsert(double reinsertAmount,
SpatialPrimitiveDistanceFunction<?> distanceFunction)
Constructor.
|
Copyright © 2019 ELKI Development Team. License information.