Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.itemsetmining |
Algorithms for frequent itemset mining such as APRIORI.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types
|
Modifier and Type | Method and Description |
---|---|
protected java.util.List<OneItemset> |
APRIORI.buildFrequentOneItemsets(Relation<? extends SparseFeatureVector<?>> relation,
int dim,
int needed)
Build the 1-itemsets.
|
Modifier and Type | Interface and Description |
---|---|
interface |
SparseNumberVector
Combines the SparseFeatureVector and NumberVector.
|
Modifier and Type | Class and Description |
---|---|
class |
BitVector
Vector using a dense bit set encoding, based on
long[] storage. |
class |
SparseByteVector
Sparse vector type, using
byte[] for storing the values, and
int[] for storing the indexes, approximately 5 bytes per non-zero
value (limited to -128..+127). |
class |
SparseDoubleVector
Sparse vector type, using
double[] for storing the values, and
int[] for storing the indexes, approximately 12 bytes per non-zero
value. |
class |
SparseFloatVector
Sparse vector type, using
float[] for storing the values, and
int[] for storing the indexes, approximately 8 bytes per non-zero
value. |
class |
SparseIntegerVector
Sparse vector type, using
int[] for storing the values, and
int[] for storing the indexes, approximately 8 bytes per non-zero
integer value. |
class |
SparseShortVector
Sparse vector type, using
short[] for storing the values, and
int[] for storing the indexes, approximately 6 bytes per non-zero
value. |
Copyright © 2019 ELKI Development Team. License information.