@Reference(authors="Erich Schubert, Remigius Wojdanowski, Arthur Zimek, Hans-Peter Kriegel", title="On Evaluation of Outlier Rankings and Outlier Scores", booktitle="Proc. 12th SIAM Int. Conf. on Data Mining (SDM 2012)", url="https://doi.org/10.1137/1.9781611972825.90", bibkey="DBLP:conf/sdm/SchubertWZK12") public class VisualizePairwiseGainMatrix extends AbstractApplication
ComputeKNNOutlierScores
, and compute a matrix with the pairwise
gains. It will have one column / row obtained for each combination.
The gain is always computed in relation to the better of the two input methods. Green colors indicate the result has improved, red indicate it became worse.
Reference:
Erich Schubert, Remigius Wojdanowski, Arthur Zimek, Hans-Peter Kriegel
On Evaluation of Outlier Rankings and Outlier Scores
Proc. 12th SIAM Int. Conf. on Data Mining (SDM 2012)
Modifier and Type | Class and Description |
---|---|
static class |
VisualizePairwiseGainMatrix.Parameterizer
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private InputStep |
inputstep
The data input part.
|
private static Logging |
LOG
Get static logger.
|
private ScalingFunction |
prescaling
Outlier scaling to apply during preprocessing.
|
private VisualizerParameterizer |
vispar
Parameterizer for visualizers.
|
private EnsembleVoting |
voting
Ensemble voting function.
|
REFERENCE, VERSION
Constructor and Description |
---|
VisualizePairwiseGainMatrix(InputStep inputstep,
ScalingFunction prescaling,
EnsembleVoting voting,
VisualizerParameterizer vispar)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static void |
main(java.lang.String[] args)
Main method.
|
void |
run()
Runs the application.
|
private void |
showVisualization(VisualizerContext context,
SimilarityMatrixVisualizer factory,
VisualizationTask task)
Show a single visualization.
|
printErrorMessage, runCLIApplication, usage
private static final Logging LOG
private InputStep inputstep
private VisualizerParameterizer vispar
private ScalingFunction prescaling
private EnsembleVoting voting
public VisualizePairwiseGainMatrix(InputStep inputstep, ScalingFunction prescaling, EnsembleVoting voting, VisualizerParameterizer vispar)
inputstep
- Input stepprescaling
- Scaling function for input scores.voting
- Voting functionvispar
- Visualizer parameterizerpublic void run()
AbstractApplication
run
in class AbstractApplication
private void showVisualization(VisualizerContext context, SimilarityMatrixVisualizer factory, VisualizationTask task)
context
- Visualizer contextfactory
- Visualizer factorytask
- Visualization taskpublic static void main(java.lang.String[] args)
args
- Command line parameters.Copyright © 2019 ELKI Development Team. License information.