public static class HopkinsStatisticClusteringTendency.Parameterizer extends AbstractNumberVectorDistanceBasedAlgorithm.Parameterizer<NumberVector>
Modifier and Type | Field and Description |
---|---|
protected int |
k
Nearest neighbor number.
|
static OptionID |
K_ID
Parameter for k.
|
private double[] |
maxima
Stores the maximum in each dimension.
|
static OptionID |
MAXIMA_ID
Parameter for maximum.
|
private double[] |
minima
Stores the minimum in each dimension.
|
static OptionID |
MINIMA_ID
Parameter for minimum.
|
protected RandomFactory |
random
Random source.
|
protected int |
rep
Number of repetitions.
|
static OptionID |
REP_ID
Parameter to specify the number of repetitions of computing the hopkins
value.
|
protected int |
sampleSize
Sample size.
|
static OptionID |
SAMPLESIZE_ID
Sample size.
|
static OptionID |
SEED_ID
Parameter to specify the random generator seed.
|
distanceFunction
Constructor and Description |
---|
Parameterizer() |
Modifier and Type | Method and Description |
---|---|
protected HopkinsStatisticClusteringTendency |
makeInstance()
Make an instance after successful configuration.
|
protected void |
makeOptions(Parameterization config)
Add all options.
|
configure, make
public static final OptionID SAMPLESIZE_ID
public static final OptionID REP_ID
public static final OptionID SEED_ID
public static final OptionID MINIMA_ID
public static final OptionID MAXIMA_ID
public static final OptionID K_ID
protected int sampleSize
protected int rep
protected int k
protected RandomFactory random
private double[] maxima
private double[] minima
protected void makeOptions(Parameterization config)
AbstractParameterizer
makeOptions
in class AbstractNumberVectorDistanceBasedAlgorithm.Parameterizer<NumberVector>
config
- Parameterization to add options to.protected HopkinsStatisticClusteringTendency makeInstance()
AbstractParameterizer
makeInstance
in class AbstractParameterizer
Copyright © 2019 ELKI Development Team. License information.