Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected
clustering algorithms or subspace clustering algorithms according to the
classical but somewhat obsolete classification schema of clustering
algorithms for axis-parallel subspaces.
|
Modifier and Type | Method and Description |
---|---|
private java.util.ArrayList<PROCLUS.PROCLUSCluster> |
PROCLUS.assignPoints(ArrayDBIDs m_current,
long[][] dimensions,
Relation<V> database)
Assigns the objects to the clusters.
|
private java.util.List<PROCLUS.PROCLUSCluster> |
PROCLUS.finalAssignment(java.util.List<Pair<double[],long[]>> dimensions,
Relation<V> database)
Refinement step to assign the objects to the final clusters.
|
Modifier and Type | Method and Description |
---|---|
private DBIDs |
PROCLUS.computeBadMedoids(ArrayDBIDs m_current,
java.util.ArrayList<PROCLUS.PROCLUSCluster> clusters,
int threshold)
Computes the bad medoids, where the medoid of a cluster with less than the
specified threshold of objects is bad.
|
private double |
PROCLUS.evaluateClusters(java.util.ArrayList<PROCLUS.PROCLUSCluster> clusters,
long[][] dimensions,
Relation<V> database)
Evaluates the quality of the clusters.
|
private java.util.List<Pair<double[],long[]>> |
PROCLUS.findDimensions(java.util.ArrayList<PROCLUS.PROCLUSCluster> clusters,
Relation<V> database)
Refinement step that determines the set of correlated dimensions for each
cluster centroid.
|
Copyright © 2019 ELKI Development Team. License information.