Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected
clustering algorithms or subspace clustering algorithms according to the
classical but somewhat obsolete classification schema of clustering
algorithms for axis-parallel subspaces.
|
Modifier and Type | Method and Description |
---|---|
private java.util.ArrayList<P3C.ClusterCandidate> |
P3C.hardClustering(WritableDataStore<double[]> probClusterIGivenX,
java.util.List<P3C.Signature> clusterCores,
DBIDs dbids)
Creates a hard clustering from the specified soft membership matrix.
|
Modifier and Type | Method and Description |
---|---|
private void |
P3C.findOutliers(Relation<V> relation,
java.util.List<MultivariateGaussianModel> models,
java.util.ArrayList<P3C.ClusterCandidate> clusterCandidates,
ModifiableDBIDs noise)
Performs outlier detection by testing the Mahalanobis distance of each
point in a cluster against the critical value of the ChiSquared
distribution with as many degrees of freedom as the cluster has relevant
attributes.
|
Copyright © 2019 ELKI Development Team. License information.