Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected
clustering algorithms or subspace clustering algorithms according to the
classical but somewhat obsolete classification schema of clustering
algorithms for axis-parallel subspaces.
|
Modifier and Type | Method and Description |
---|---|
java.util.List<MultivariateGaussianModel> |
MultivariateGaussianModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df) |
Modifier and Type | Method and Description |
---|---|
private void |
P3C.assignUnassigned(Relation<V> relation,
WritableDataStore<double[]> probClusterIGivenX,
java.util.List<MultivariateGaussianModel> models,
ModifiableDBIDs unassigned)
Assign unassigned objects to best candidate based on shortest Mahalanobis
distance.
|
private void |
P3C.computeFuzzyMembership(Relation<V> relation,
java.util.ArrayList<P3C.Signature> clusterCores,
ModifiableDBIDs unassigned,
WritableDataStore<double[]> probClusterIGivenX,
java.util.List<MultivariateGaussianModel> models,
int dim)
Computes a fuzzy membership with the weights based on which cluster cores
each data point is part of.
|
private void |
P3C.findOutliers(Relation<V> relation,
java.util.List<MultivariateGaussianModel> models,
java.util.ArrayList<P3C.ClusterCandidate> clusterCandidates,
ModifiableDBIDs noise)
Performs outlier detection by testing the Mahalanobis distance of each
point in a cluster against the critical value of the ChiSquared
distribution with as many degrees of freedom as the cluster has relevant
attributes.
|
Copyright © 2019 ELKI Development Team. License information.