Package | Description |
---|---|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Field and Description |
---|---|
(package private) SameSizeKMeansAlgorithm.Meta |
SameSizeKMeansAlgorithm.PreferenceComparator.c
Meta to use for comparison.
|
Modifier and Type | Method and Description |
---|---|
protected WritableDataStore<SameSizeKMeansAlgorithm.Meta> |
SameSizeKMeansAlgorithm.initializeMeta(Relation<V> relation,
List<? extends NumberVector> means)
Initialize the metadata storage.
|
Modifier and Type | Method and Description |
---|---|
IntegerComparator |
SameSizeKMeansAlgorithm.PreferenceComparator.select(SameSizeKMeansAlgorithm.Meta c)
Set the meta to sort by
|
protected void |
SameSizeKMeansAlgorithm.transfer(WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
SameSizeKMeansAlgorithm.Meta meta,
ModifiableDBIDs src,
ModifiableDBIDs dst,
DBIDRef id,
Integer dstnum)
Transfer a single element from one cluster to another.
|
Modifier and Type | Method and Description |
---|---|
protected ArrayModifiableDBIDs |
SameSizeKMeansAlgorithm.initialAssignment(List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
DBIDs ids) |
protected List<Vector> |
SameSizeKMeansAlgorithm.refineResult(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
|
protected void |
SameSizeKMeansAlgorithm.transfer(WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
SameSizeKMeansAlgorithm.Meta meta,
ModifiableDBIDs src,
ModifiableDBIDs dst,
DBIDRef id,
Integer dstnum)
Transfer a single element from one cluster to another.
|
protected void |
SameSizeKMeansAlgorithm.updateDistances(Relation<V> relation,
List<Vector> means,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
NumberVectorDistanceFunction<? super V> df)
Compute the distances of each object to all means.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.