Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.evaluation.classification |
Evaluation of classification algorithms.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model.
|
de.lmu.ifi.dbs.elki.math.geometry |
Algorithms from computational geometry.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter.writers |
Serialization handlers for individual data types.
|
Modifier and Type | Class and Description |
---|---|
static class |
KNNDistancesSampler.KNNDistanceOrderResult
Curve result for a list containing the knn distances.
|
static class |
MaterializeDistances.DistanceEntry
Object representing a pairwise distance.
|
Modifier and Type | Class and Description |
---|---|
static class |
RepresentativeUncertainClustering.RepresentativenessEvaluation
Representativeness evaluation result.
|
Modifier and Type | Class and Description |
---|---|
static class |
SOD.SODModel
SOD Model class
|
Modifier and Type | Class and Description |
---|---|
static class |
EvaluateRetrievalPerformance.RetrievalPerformanceResult
Result object for MAP scores.
|
Modifier and Type | Class and Description |
---|---|
class |
Cluster<M extends Model>
Generic cluster class, that may or not have hierarchical information.
|
Modifier and Type | Class and Description |
---|---|
class |
CoreObjectsModel
Cluster model using "core" objects.
|
class |
CorrelationAnalysisSolution<V extends NumberVector>
A solution of correlation analysis is a matrix of equations describing the
dependencies.
|
class |
CorrelationModel<V extends FeatureVector<?>>
Cluster model using a filtered PCA result and an centroid.
|
class |
DimensionModel
Cluster model just providing a cluster dimensionality.
|
class |
EMModel
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
class |
KMeansModel
Trivial subclass of the
MeanModel that indicates the clustering to be
produced by k-means (so the Voronoi cell visualization is sensible). |
class |
LinearEquationModel
Cluster model containing a linear equation system for the cluster.
|
class |
MeanModel
Cluster model that stores a mean for the cluster.
|
class |
MedoidModel
Cluster model that stores a mean for the cluster.
|
class |
PrototypeModel<V>
Cluster model that stores a prototype for each cluster.
|
class |
SubspaceModel
Model for Subspace Clusters.
|
Modifier and Type | Class and Description |
---|---|
class |
ConfusionMatrixEvaluationResult
Provides the prediction performance measures for a classifier based on the
confusion matrix.
|
Modifier and Type | Class and Description |
---|---|
static class |
EvaluateClustering.ScoreResult
Result object for outlier score judgements.
|
Modifier and Type | Class and Description |
---|---|
static class |
OutlierPrecisionAtKCurve.PrecisionAtKCurve
Precision at K curve.
|
static class |
OutlierPrecisionRecallCurve.PRCurve
P/R Curve
|
static class |
OutlierROCCurve.ROCResult
Result object for ROC curves.
|
static class |
OutlierSmROCCurve.SmROCResult
Result object for Smooth ROC curves.
|
Modifier and Type | Class and Description |
---|---|
class |
XYCurve
An XYCurve is an ordered collection of 2d points, meant for chart generation.
|
Modifier and Type | Class and Description |
---|---|
class |
EvaluationResult
Abstract evaluation result.
|
class |
FrequentItemsetsResult
Result class for Apriori Algorithm.
|
Modifier and Type | Method and Description |
---|---|
void |
TextWriterTextWriteable.write(TextWriterStream out,
String label,
TextWriteable obj)
Use the objects own text serialization.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.