Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions.
|
de.lmu.ifi.dbs.elki.datasource.filter.transform |
Data space transformations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.math |
Mathematical operations and utilities used throughout the framework.
|
de.lmu.ifi.dbs.elki.math.dimensionsimilarity |
Functions to compute the similarity of dimensions (or the interestingness of the combination).
|
de.lmu.ifi.dbs.elki.math.geometry |
Algorithms from computational geometry.
|
de.lmu.ifi.dbs.elki.math.linearalgebra |
Linear Algebra package provides classes and computational methods for operations on matrices.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.randomprojections |
Random projection families.
|
de.lmu.ifi.dbs.elki.math.statistics |
Statistical tests and methods.
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike |
Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays.
|
Modifier and Type | Field and Description |
---|---|
(package private) Matrix |
ORCLUS.ORCLUSCluster.basis
The matrix defining the subspace of this cluster.
|
(package private) Matrix |
LMCLUS.Separation.basis
Basis of manifold
|
Modifier and Type | Method and Description |
---|---|
private Matrix |
CASH.determineBasis(double[] alpha)
Determines a basis defining a subspace described by the specified alpha
values.
|
private Matrix |
ORCLUS.findBasis(Relation<V> database,
DistanceQuery<V> distFunc,
ORCLUS.ORCLUSCluster cluster,
int dim)
Finds the basis of the subspace of dimensionality
dim for the
specified cluster. |
private Matrix |
LMCLUS.generateOrthonormalBasis(List<Vector> vectors)
This Method generates an orthonormal basis from a set of Vectors.
|
private Matrix |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dim,
CASHInterval interval,
ModifiableDBIDs ids)
Runs the derivator on the specified interval and assigns all points having
a distance less then the standard deviation of the derivator model to the
model to this model.
|
Modifier and Type | Method and Description |
---|---|
private void |
HiCO.adjust(Matrix v,
Matrix e_czech,
Vector vector,
int corrDim)
Inserts the specified vector into the given orthonormal matrix
v at column corrDim . |
private MaterializedRelation<ParameterizationFunction> |
CASH.buildDB(int dim,
Matrix basis,
DBIDs ids,
Relation<ParameterizationFunction> relation)
Builds a dim-1 dimensional database where the objects are projected into
the specified subspace.
|
private double |
LMCLUS.deviation(Vector delta,
Matrix beta)
Deviation from a manifold described by beta.
|
private ParameterizationFunction |
CASH.project(Matrix basis,
ParameterizationFunction f)
Projects the specified parameterization function into the subspace
described by the given basis.
|
Modifier and Type | Field and Description |
---|---|
(package private) Matrix |
MultivariateGaussianModel.covariance
Covariance matrix, and inverse.
|
(package private) Matrix |
MultivariateGaussianModel.invCovMatr
Covariance matrix, and inverse.
|
Modifier and Type | Method and Description |
---|---|
static double[] |
VectorUtil.fastTimes(Matrix mat,
NumberVector v)
This is an ugly hack, but we don't want to have the
Matrix class
depend on NumberVector . |
Modifier and Type | Field and Description |
---|---|
private Matrix |
EMModel.covarianceMatrix
Cluster covariance matrix
|
private Matrix |
CorrelationAnalysisSolution.similarityMatrix
The similarity matrix of the pca.
|
private Matrix |
CorrelationAnalysisSolution.strongEigenvectors
The strong eigenvectors of the hyperplane induced by the correlation.
|
private Matrix |
CorrelationAnalysisSolution.weakEigenvectors
The weak eigenvectors of the hyperplane induced by the correlation.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
CorrelationAnalysisSolution.dataProjections(V p)
Returns the data vectors after projection.
|
Matrix |
EMModel.getCovarianceMatrix() |
Matrix |
CorrelationAnalysisSolution.getSimilarityMatrix()
Returns the similarity matrix of the pca.
|
Matrix |
CorrelationAnalysisSolution.getStrongEigenvectors()
Returns the strong eigenvectors.
|
Matrix |
CorrelationAnalysisSolution.getWeakEigenvectors()
Returns the weak eigenvectors.
|
Modifier and Type | Method and Description |
---|---|
void |
EMModel.setCovarianceMatrix(Matrix covarianceMatrix) |
Constructor and Description |
---|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix.
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid,
NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and
number format.
|
EMModel(Vector mean,
Matrix covarianceMatrix)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<Matrix> |
TypeUtil.MATRIX
Matrix type.
|
Modifier and Type | Method and Description |
---|---|
protected Matrix |
LinearDiscriminantAnalysisFilter.computeProjectionMatrix(List<V> vectorcolumn,
List<? extends ClassLabel> classcolumn,
int dim) |
protected abstract Matrix |
AbstractSupervisedProjectionVectorFilter.computeProjectionMatrix(List<V> vectorcolumn,
List<? extends ClassLabel> classcolumn,
int dim)
computes the projection matrix
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
MatrixWeightedDistanceFunction.weightMatrix
The weight matrix.
|
Constructor and Description |
---|
MatrixWeightedDistanceFunction(Matrix weightMatrix)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
RGBHistogramQuadraticDistanceFunction.computeWeightMatrix(int bpp)
Compute weight matrix for a RGB color histogram
|
static Matrix |
HSBHistogramQuadraticDistanceFunction.computeWeightMatrix(int quanth,
int quants,
int quantb)
Compute the weight matrix for HSB similarity.
|
Modifier and Type | Field and Description |
---|---|
(package private) Matrix |
KernelMatrix.kernel
The kernel matrix
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
KernelMatrix.centerKernelMatrix(KernelMatrix kernelMatrix)
Centers the Kernel Matrix in Feature Space according to Smola et.
|
static Matrix |
KernelMatrix.centerMatrix(Matrix matrix)
Centers the matrix in feature space according to Smola et Schoelkopf,
Learning with Kernels p. 431 Alters the input matrix.
|
Matrix |
KernelMatrix.getKernel()
Get the kernel matrix.
|
Matrix |
KernelMatrix.getSubColumn(DBIDRef i1,
DBIDs ids)
Deprecated.
|
Matrix |
KernelMatrix.getSubMatrix(DBIDs ids)
Returns a sub kernel matrix for all objects in ids
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
KernelMatrix.centerMatrix(Matrix matrix)
Centers the matrix in feature space according to Smola et Schoelkopf,
Learning with Kernels p. 431 Alters the input matrix.
|
Constructor and Description |
---|
KernelMatrix(Matrix matrix)
Makes a new kernel matrix from matrix (with data copying).
|
Modifier and Type | Method and Description |
---|---|
static double |
MathUtil.mahalanobisDistance(Matrix weightMatrix,
Vector o1_minus_o2)
Compute the Mahalanobis distance using the given weight matrix.
|
static double |
MathUtil.mahalanobisDistance(Matrix weightMatrix,
Vector o1,
Vector o2)
Compute the Mahalanobis distance using the given weight matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
DimensionSimilarityMatrix.copyToFullMatrix()
Transform linear triangle matrix into a full matrix.
|
Modifier and Type | Method and Description |
---|---|
static int[] |
PrimsMinimumSpanningTree.processDense(Matrix mat)
Process a k x k distance matrix.
|
Modifier and Type | Field and Description |
---|---|
private Matrix |
AffineTransformation.inv
the inverse transformation
|
private Matrix |
AffineTransformation.trans
The transformation matrix of dim+1 x dim+1 for homogeneous coordinates
|
Modifier and Type | Method and Description |
---|---|
Matrix |
Matrix.appendColumns(Matrix columns)
Returns a matrix which consists of this matrix and the specified columns.
|
Matrix |
Matrix.cheatToAvoidSingularity(double constant)
Adds a given value to the diagonal entries if the entry is smaller than the
constant.
|
Matrix |
Matrix.clone()
Clone the Matrix object.
|
Matrix |
Matrix.completeBasis()
Completes this d x c basis of a subspace of R^d to a d x d basis of R^d,
i.e. appends c-d columns to this basis.
|
Matrix |
Matrix.completeToOrthonormalBasis()
Completes this d x c basis of a subspace of R^d to a d x d basis of R^d,
i.e. appends c-d columns to this basis.
|
static Matrix |
Matrix.constructWithCopy(double[][] A)
Construct a matrix from a copy of a 2-D array.
|
Matrix |
Matrix.copy()
Make a deep copy of a matrix.
|
Matrix |
CovarianceMatrix.destroyToNaiveMatrix()
Obtain the covariance matrix according to the population statistics: n
degrees of freedom.
|
Matrix |
CovarianceMatrix.destroyToSampleMatrix()
Obtain the covariance matrix according to the sample statistics: (n-1)
degrees of freedom.
|
static Matrix |
Matrix.diagonal(double[] diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on
the diagonal.
|
static Matrix |
Matrix.diagonal(Vector diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on
the diagonal.
|
Matrix |
SortedEigenPairs.eigenVectors()
Returns the sorted eigenvectors.
|
Matrix |
SortedEigenPairs.eigenVectors(int n)
Returns the first
n sorted eigenvectors as a matrix. |
Matrix |
EigenvalueDecomposition.getD()
Return the block diagonal eigenvalue matrix
|
Matrix |
QRDecomposition.getH()
Return the Householder vectors
|
Matrix |
AffineTransformation.getInverse()
Get a copy of the inverse matrix
|
Matrix |
CholeskyDecomposition.getL()
Return triangular factor.
|
Matrix |
LUDecomposition.getL()
Return lower triangular factor
|
Matrix |
Matrix.getMatrix(int[] r,
int[] c)
Get a submatrix.
|
Matrix |
Matrix.getMatrix(int[] r,
int j0,
int j1)
Get a submatrix.
|
Matrix |
Matrix.getMatrix(int i0,
int i1,
int[] c)
Get a submatrix.
|
Matrix |
Matrix.getMatrix(int i0,
int i1,
int j0,
int j1)
Get a submatrix.
|
Matrix |
QRDecomposition.getQ()
Generate and return the (economy-sized) orthogonal factor
|
Matrix |
QRDecomposition.getR()
Return the upper triangular factor
|
Matrix |
SingularValueDecomposition.getS()
Return the diagonal matrix of singular values
|
Matrix |
AffineTransformation.getTransformation()
Get a copy of the transformation matrix
|
Matrix |
SingularValueDecomposition.getU()
Return the left singular vectors
|
Matrix |
LUDecomposition.getU()
Return upper triangular factor
|
Matrix |
SingularValueDecomposition.getV()
Return the right singular vectors
|
Matrix |
EigenvalueDecomposition.getV()
Return the eigenvector matrix
|
static Matrix |
Matrix.identity(int m,
int n)
Generate identity matrix
|
Matrix |
Matrix.increment(int i,
int j,
double s)
Increments a single element.
|
Matrix |
Matrix.inverse()
Matrix inverse or pseudoinverse
|
Matrix |
CovarianceMatrix.makeNaiveMatrix()
Obtain the covariance matrix according to the population statistics: n
degrees of freedom.
|
Matrix |
CovarianceMatrix.makeSampleMatrix()
Obtain the covariance matrix according to the sample statistics: (n-1)
degrees of freedom.
|
Matrix |
Matrix.minus(Matrix B)
C = A - B
|
Matrix |
Matrix.minusEquals(Matrix B)
A = A - B
|
Matrix |
Matrix.minusTimes(Matrix B,
double s)
C = A - s * B
|
Matrix |
Matrix.minusTimesEquals(Matrix B,
double s)
A = A - s * B
|
Matrix |
Matrix.orthonormalize()
Returns an orthonormalization of this matrix.
|
Matrix |
Matrix.plus(double s)
C = A + s
|
Matrix |
Matrix.plus(Matrix B)
C = A + B
|
Matrix |
Matrix.plusDiagonal(double s)
C = A + s
|
Matrix |
Matrix.plusDiagonalEquals(double s)
A = A + s
|
Matrix |
Matrix.plusEquals(double s)
A = A + s
|
Matrix |
Matrix.plusEquals(Matrix B)
A = A + B
|
Matrix |
Matrix.plusTimes(Matrix B,
double s)
C = A + s * B
|
Matrix |
Matrix.plusTimesEquals(Matrix B,
double s)
A = A + s * B
|
static Matrix |
Matrix.random(int m,
int n)
Generate matrix with random elements
|
static Matrix |
Matrix.read(BufferedReader input)
Read a matrix from a stream.
|
Matrix |
SortedEigenPairs.reverseEigenVectors(int n)
Returns the last
n sorted eigenvectors as a matrix. |
Matrix |
Matrix.robustInverse()
Matrix inverse for square matrixes.
|
Matrix |
Matrix.set(int i,
int j,
double s)
Set a single element.
|
Matrix |
ProjectionResult.similarityMatrix()
Projection matrix
|
Matrix |
CholeskyDecomposition.solve(Matrix B)
Solve A*X = B
|
Matrix |
Matrix.solve(Matrix B)
Solve A*X = B
|
Matrix |
QRDecomposition.solve(Matrix B)
Least squares solution of A*X = B
|
Matrix |
LUDecomposition.solve(Matrix B)
Solve A*X = B
|
Matrix |
Matrix.times(double s)
Multiply a matrix by a scalar, C = s*A
|
Matrix |
Vector.times(Matrix B)
Linear algebraic matrix multiplication, A * B.
|
Matrix |
Matrix.times(Matrix B)
Linear algebraic matrix multiplication, A * B
|
Matrix |
Matrix.timesEquals(double s)
Multiply a matrix by a scalar in place, A = s*A
|
Matrix |
Vector.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T.
|
Matrix |
Matrix.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T
|
Matrix |
Vector.timesTranspose(Vector B)
Linear algebraic matrix multiplication, A * B^T.
|
Matrix |
Matrix.transpose()
Matrix transpose.
|
Matrix |
Vector.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B.
|
Matrix |
Matrix.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B
|
Matrix |
Matrix.transposeTimesTranspose(Matrix B)
Linear algebraic matrix multiplication, A^T * B^T.
|
static Matrix |
Matrix.unitMatrix(int dim)
Returns the unit matrix of the specified dimension.
|
static Matrix |
Matrix.zeroMatrix(int dim)
Returns the zero matrix of the specified dimension.
|
Modifier and Type | Method and Description |
---|---|
void |
AffineTransformation.addMatrix(Matrix m)
Add a matrix operation to the matrix.
|
Matrix |
Matrix.appendColumns(Matrix columns)
Returns a matrix which consists of this matrix and the specified columns.
|
protected void |
Matrix.checkMatrixDimensions(Matrix B)
Check if size(A) == size(B)
|
boolean |
Matrix.linearlyIndependent(Matrix columnMatrix)
Returns true if the specified column matrix
a is linearly
independent to the columns of this matrix. |
static Centroid |
Centroid.make(Matrix mat)
Static Constructor from an existing matrix columns.
|
static CovarianceMatrix |
CovarianceMatrix.make(Matrix mat)
Static Constructor.
|
Matrix |
Matrix.minus(Matrix B)
C = A - B
|
Matrix |
Matrix.minusEquals(Matrix B)
A = A - B
|
Matrix |
Matrix.minusTimes(Matrix B,
double s)
C = A - s * B
|
Matrix |
Matrix.minusTimesEquals(Matrix B,
double s)
A = A - s * B
|
Matrix |
Matrix.plus(Matrix B)
C = A + B
|
Matrix |
Matrix.plusEquals(Matrix B)
A = A + B
|
Matrix |
Matrix.plusTimes(Matrix B,
double s)
C = A + s * B
|
Matrix |
Matrix.plusTimesEquals(Matrix B,
double s)
A = A + s * B
|
Vector |
Vector.projection(Matrix v)
Projects this row vector into the subspace formed by the specified matrix
v.
|
void |
Matrix.setMatrix(int[] r,
int[] c,
Matrix X)
Set a submatrix.
|
void |
Matrix.setMatrix(int[] r,
int j0,
int j1,
Matrix X)
Set a submatrix.
|
void |
Matrix.setMatrix(int i0,
int i1,
int[] c,
Matrix X)
Set a submatrix.
|
void |
Matrix.setMatrix(int i0,
int i1,
int j0,
int j1,
Matrix X)
Set a submatrix.
|
Matrix |
CholeskyDecomposition.solve(Matrix B)
Solve A*X = B
|
Matrix |
Matrix.solve(Matrix B)
Solve A*X = B
|
Matrix |
QRDecomposition.solve(Matrix B)
Least squares solution of A*X = B
|
Matrix |
LUDecomposition.solve(Matrix B)
Solve A*X = B
|
Matrix |
Vector.times(Matrix B)
Linear algebraic matrix multiplication, A * B.
|
Matrix |
Matrix.times(Matrix B)
Linear algebraic matrix multiplication, A * B
|
Matrix |
Vector.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T.
|
Matrix |
Matrix.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T
|
Matrix |
Vector.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B.
|
Matrix |
Matrix.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B
|
double |
Vector.transposeTimesTimes(Matrix B,
Vector c)
Linear algebraic matrix multiplication, aT * B * c.
|
Matrix |
Matrix.transposeTimesTranspose(Matrix B)
Linear algebraic matrix multiplication, A^T * B^T.
|
Constructor and Description |
---|
AffineTransformation(int dim,
Matrix trans,
Matrix inv)
Trivial constructor with all fields, mostly for cloning
|
CholeskyDecomposition(Matrix Arg)
Cholesky algorithm for symmetric and positive definite matrix.
|
EigenvalueDecomposition(Matrix Arg)
Check for symmetry, then construct the eigenvalue decomposition
|
LUDecomposition(Matrix A)
LU Decomposition
|
Matrix(Matrix mat)
Constructor, cloning an existing matrix.
|
QRDecomposition(Matrix A)
QR Decomposition, computed by Householder reflections.
|
SingularValueDecomposition(Matrix Arg)
Construct the singular value decomposition
|
Modifier and Type | Field and Description |
---|---|
private Matrix |
PCAFilteredResult.adapatedStrongEigenvectors
The diagonal matrix of adapted strong eigenvalues: eigenvectors * e_czech.
|
private Matrix |
PCAFilteredResult.e_czech
The selection matrix of the strong eigenvectors.
|
private Matrix |
PCAFilteredResult.e_hat
The selection matrix of the weak eigenvectors.
|
private Matrix |
PCAResult.eigenvectors
The eigenvectors in decreasing order to their corresponding eigenvalues.
|
(package private) Matrix |
PCAFilteredAutotuningRunner.Cand.m
Candidate matrix
|
private Matrix |
PCAFilteredResult.m_czech
The dissimilarity matrix.
|
private Matrix |
PCAFilteredResult.m_hat
The similarity matrix.
|
private Matrix |
PCAFilteredResult.strongEigenvectors
The strong eigenvectors to their corresponding filtered eigenvalues.
|
private Matrix |
PCAFilteredResult.weakEigenvectors
The weak eigenvectors to their corresponding filtered eigenvalues.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
PCAFilteredResult.adapatedStrongEigenvectors()
Returns the adapted strong eigenvectors.
|
Matrix |
PCAFilteredResult.dissimilarityMatrix()
Returns the dissimilarity matrix (M_czech) of this LocalPCA.
|
Matrix |
PCAResult.getEigenvectors()
Returns the matrix of eigenvectors of the object to which this PCA belongs
to.
|
Matrix |
PCAFilteredResult.getStrongEigenvectors()
Returns the matrix of strong eigenvectors after passing the eigen pair
filter.
|
Matrix |
PCAFilteredResult.getWeakEigenvectors()
Returns the matrix of weak eigenvectors after passing the eigen pair
filter.
|
Matrix |
StandardCovarianceMatrixBuilder.processDatabase(Relation<? extends NumberVector> database)
Compute Covariance Matrix for a complete database.
|
Matrix |
AbstractCovarianceMatrixBuilder.processDatabase(Relation<? extends NumberVector> database) |
Matrix |
CovarianceMatrixBuilder.processDatabase(Relation<? extends NumberVector> database)
Compute Covariance Matrix for a complete database.
|
Matrix |
StandardCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> database)
Compute Covariance Matrix for a collection of database IDs.
|
abstract Matrix |
AbstractCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> database) |
Matrix |
CovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> database)
Compute Covariance Matrix for a collection of database IDs.
|
Matrix |
WeightedCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> relation)
Weighted Covariance Matrix for a set of IDs.
|
Matrix |
RANSACCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> relation) |
Matrix |
AbstractCovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database) |
Matrix |
CovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database)
Compute Covariance Matrix for a QueryResult Collection.
|
Matrix |
AbstractCovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database,
int k) |
Matrix |
CovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
Matrix |
WeightedCovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
Matrix |
PCAFilteredResult.selectionMatrixOfStrongEigenvectors()
Returns the selection matrix of the strong eigenvectors (E_czech)
of this LocalPCA.
|
Matrix |
PCAFilteredResult.selectionMatrixOfWeakEigenvectors()
Returns the selection matrix of the weak eigenvectors (E_hat) of
the object to which this PCA belongs to.
|
Matrix |
PCAFilteredResult.similarityMatrix()
Returns the similarity matrix (M_hat) of this LocalPCA.
|
Modifier and Type | Method and Description |
---|---|
PCAResult |
PCARunner.processCovarMatrix(Matrix covarMatrix)
Process an existing covariance Matrix.
|
PCAFilteredResult |
PCAFilteredRunner.processCovarMatrix(Matrix covarMatrix)
Process an existing Covariance Matrix.
|
Constructor and Description |
---|
Cand(Matrix m,
double explain,
int dim)
Constructor.
|
PCAResult(double[] eigenvalues,
Matrix eigenvectors,
SortedEigenPairs eigenPairs)
Build a PCA result object.
|
Modifier and Type | Field and Description |
---|---|
(package private) Matrix |
AbstractRandomProjectionFamily.MatrixProjection.matrix
Projection matrix.
|
Constructor and Description |
---|
MatrixProjection(Matrix matrix)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Matrix |
MultipleLinearRegression.x
The (n x p+1)-matrix holding the x-values, where the i-th row has the form
(1 x1i ... x1p).
|
private Matrix |
MultipleLinearRegression.xx_inverse
Holds the matrix (x'x)^-1.
|
Modifier and Type | Method and Description |
---|---|
private static Matrix |
PolynomialRegression.xMatrix(Vector x,
int p) |
Modifier and Type | Method and Description |
---|---|
double |
MultipleLinearRegression.estimateY(Matrix x)
Perform an estimation of y on the specified matrix.
|
Constructor and Description |
---|
MultipleLinearRegression(Vector y,
Matrix x)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static String |
FormatUtil.format(Matrix m)
returns String-representation of Matrix.
|
static String |
FormatUtil.format(Matrix m,
int w,
int d)
Returns a string representation of this matrix.
|
static String |
FormatUtil.format(Matrix m,
NumberFormat nf)
returns String-representation of Matrix.
|
static String |
FormatUtil.format(Matrix m,
String pre)
Returns a string representation of this matrix.
|
static String |
FormatUtil.format(Matrix m,
String pre,
NumberFormat nf)
Returns a string representation of this matrix.
|
Modifier and Type | Method and Description |
---|---|
Double |
FlatMatrixAdapter.get(Matrix array,
int off)
Deprecated.
|
byte |
FlatMatrixAdapter.getByte(Matrix array,
int off) |
double |
FlatMatrixAdapter.getDouble(Matrix array,
int off) |
float |
FlatMatrixAdapter.getFloat(Matrix array,
int off) |
int |
FlatMatrixAdapter.getInteger(Matrix array,
int off) |
long |
FlatMatrixAdapter.getLong(Matrix array,
int off) |
short |
FlatMatrixAdapter.getShort(Matrix array,
int off) |
int |
FlatMatrixAdapter.size(Matrix array) |
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.