Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.classification |
Classification algorithms.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions.
|
de.lmu.ifi.dbs.elki.datasource.filter.transform |
Data space transformations.
|
de.lmu.ifi.dbs.elki.evaluation.classification |
Evaluation of classification algorithms.
|
de.lmu.ifi.dbs.elki.evaluation.classification.holdout |
Holdout and cross-validation strategies for evaluating classifiers.
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.visualization.gui |
Package to provide a visualization GUI.
|
Modifier and Type | Field and Description |
---|---|
protected ClassLabel |
PriorProbabilityClassifier.prediction
Index of the most abundant class.
|
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends ClassLabel> |
KNNClassifier.labelrep
Class label representation.
|
protected ArrayList<ClassLabel> |
PriorProbabilityClassifier.labels
Class labels seen.
|
Modifier and Type | Method and Description |
---|---|
ClassLabel |
Classifier.classify(O instance)
Classify a single instance.
|
ClassLabel |
KNNClassifier.classify(O instance) |
ClassLabel |
PriorProbabilityClassifier.classify(Object instance) |
Modifier and Type | Method and Description |
---|---|
protected double[] |
AbstractClassifier.alignLabels(List<ClassLabel> l1,
double[] d1,
Collection<ClassLabel> l2)
Align the labels for a label query.
|
protected double[] |
AbstractClassifier.alignLabels(List<ClassLabel> l1,
double[] d1,
Collection<ClassLabel> l2)
Align the labels for a label query.
|
void |
Classifier.buildClassifier(Database database,
Relation<? extends ClassLabel> classLabels)
Performs the training.
|
void |
KNNClassifier.buildClassifier(Database database,
Relation<? extends ClassLabel> labels) |
void |
PriorProbabilityClassifier.buildClassifier(Database database,
Relation<? extends ClassLabel> labelrep)
Learns the prior probability for all classes.
|
double[] |
KNNClassifier.classProbabilities(O instance,
ArrayList<ClassLabel> labels) |
double[] |
PriorProbabilityClassifier.classProbabilities(Object instance,
ArrayList<ClassLabel> labels) |
Modifier and Type | Class and Description |
---|---|
static class |
ClassLabel.Factory<L extends ClassLabel>
Class label factory.
|
Modifier and Type | Class and Description |
---|---|
class |
HierarchicalClassLabel
A HierarchicalClassLabel is a ClassLabel to reflect a hierarchical structure
of classes.
|
class |
SimpleClassLabel
A simple class label casting a String as it is as label.
|
Modifier and Type | Method and Description |
---|---|
int |
SimpleClassLabel.compareTo(ClassLabel o)
The ordering of two SimpleClassLabels is given by the ordering on the
Strings they represent.
|
int |
HierarchicalClassLabel.compareTo(ClassLabel o)
Compares two HierarchicalClassLabels.
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<ClassLabel> |
TypeUtil.CLASSLABEL
A class label.
|
Modifier and Type | Method and Description |
---|---|
protected List<Centroid> |
LinearDiscriminantAnalysisFilter.computeCentroids(int dim,
List<V> vectorcolumn,
List<ClassLabel> keys,
Map<ClassLabel,gnu.trove.list.TIntList> classes)
Compute the centroid for each class.
|
protected List<Centroid> |
LinearDiscriminantAnalysisFilter.computeCentroids(int dim,
List<V> vectorcolumn,
List<ClassLabel> keys,
Map<ClassLabel,gnu.trove.list.TIntList> classes)
Compute the centroid for each class.
|
protected Matrix |
LinearDiscriminantAnalysisFilter.computeProjectionMatrix(List<V> vectorcolumn,
List<? extends ClassLabel> classcolumn,
int dim) |
protected abstract Matrix |
AbstractSupervisedProjectionVectorFilter.computeProjectionMatrix(List<V> vectorcolumn,
List<? extends ClassLabel> classcolumn,
int dim)
computes the projection matrix
|
Modifier and Type | Field and Description |
---|---|
private ArrayList<ClassLabel> |
ConfusionMatrix.labels
Holds the class labels.
|
Constructor and Description |
---|
ConfusionMatrix(ArrayList<ClassLabel> labels,
int[][] confusion)
Provides a confusion matrix for the given values.
|
Modifier and Type | Field and Description |
---|---|
private ArrayList<ClassLabel> |
TrainingAndTestSet.labels
The overall labels.
|
protected ArrayList<ClassLabel> |
AbstractHoldout.labels
Labels in the current data set.
|
Modifier and Type | Method and Description |
---|---|
static ArrayList<ClassLabel> |
AbstractHoldout.allClassLabels(MultipleObjectsBundle bundle)
Get an array of all class labels in a given data set.
|
static ArrayList<ClassLabel> |
AbstractHoldout.allClassLabels(MultipleObjectsBundle bundle,
int col)
Get an array of all class labels in a given data set.
|
ArrayList<ClassLabel> |
TrainingAndTestSet.getLabels()
Returns all labels present in the data set.
|
ArrayList<ClassLabel> |
AbstractHoldout.getLabels() |
ArrayList<ClassLabel> |
Holdout.getLabels()
Get the sorted class labels present in this data set.
|
Constructor and Description |
---|
TrainingAndTestSet(MultipleObjectsBundle training,
MultipleObjectsBundle test,
ArrayList<ClassLabel> labels)
Provides a pair of training and test data sets out of the given two
databases.
|
Modifier and Type | Method and Description |
---|---|
static SortedSet<ClassLabel> |
DatabaseUtil.getClassLabels(Database database)
Retrieves all class labels within the database.
|
static SortedSet<ClassLabel> |
DatabaseUtil.getClassLabels(Relation<? extends ClassLabel> database)
Retrieves all class labels within the database.
|
Modifier and Type | Method and Description |
---|---|
static SortedSet<ClassLabel> |
DatabaseUtil.getClassLabels(Relation<? extends ClassLabel> database)
Retrieves all class labels within the database.
|
Modifier and Type | Field and Description |
---|---|
(package private) ModifiableRelation<ClassLabel> |
SelectionTableWindow.crep
Class label representation
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.