Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<PROCLUS.PROCLUSCluster> |
PROCLUS.assignPoints(ArrayDBIDs m_current,
long[][] dimensions,
Relation<V> database)
Assigns the objects to the clusters.
|
private List<PROCLUS.PROCLUSCluster> |
PROCLUS.finalAssignment(List<Pair<Vector,long[]>> dimensions,
Relation<V> database)
Refinement step to assign the objects to the final clusters.
|
Modifier and Type | Method and Description |
---|---|
private DBIDs |
PROCLUS.computeBadMedoids(ArrayDBIDs m_current,
ArrayList<PROCLUS.PROCLUSCluster> clusters,
int threshold)
Computes the bad medoids, where the medoid of a cluster with less than the
specified threshold of objects is bad.
|
private double |
PROCLUS.evaluateClusters(ArrayList<PROCLUS.PROCLUSCluster> clusters,
long[][] dimensions,
Relation<V> database)
Evaluates the quality of the clusters.
|
private List<Pair<Vector,long[]>> |
PROCLUS.findDimensions(ArrayList<PROCLUS.PROCLUSCluster> clusters,
Relation<V> database)
Refinement step that determines the set of correlated dimensions for each
cluster centroid.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.