
@Reference(authors="D. Guo", title="Coordinating computational and visual approaches for interactive feature selection and multivariate clustering", booktitle="Information Visualization, 2(4)", url="http://dx.doi.org/10.1057/palgrave.ivs.9500053") public class MCEDimensionSimilarity extends Object implements DimensionSimilarity<NumberVector>
D. Guo
Coordinating computational and visual approaches for interactive feature
selection and multivariate clustering
Information Visualization, 2(4), 2003.
| Modifier and Type | Class and Description |
|---|---|
static class |
MCEDimensionSimilarity.Parameterizer
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
static MCEDimensionSimilarity |
STATIC
Static instance.
|
static int |
TARGET
Desired size: 35 observations.
|
| Modifier | Constructor and Description |
|---|---|
protected |
MCEDimensionSimilarity()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
private ArrayList<ArrayList<DBIDs>> |
buildPartitions(Relation<? extends NumberVector> relation,
DBIDs ids,
int depth,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list.
|
void |
computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix)
Compute the dimension similarity matrix
|
private void |
divide(DBIDArrayIter it,
double[] data,
ArrayList<DBIDs> idx,
int start,
int end,
int depth,
Mean mean)
Recursive call to further subdivide the array.
|
private double |
getMCEntropy(int[][] mat,
int[] psizesx,
int[] psizesy,
int size,
int gridsize,
double loggrid)
Compute the MCE entropy value.
|
private void |
intersectionMatrix(int[][] res,
ArrayList<? extends DBIDs> partsx,
ArrayList<? extends DBIDs> partsy,
int gridsize)
Intersect the two 1d grid decompositions, to obtain a 2d matrix.
|
public static final MCEDimensionSimilarity STATIC
public static final int TARGET
protected MCEDimensionSimilarity()
public void computeDimensionSimilarites(Relation<? extends NumberVector> relation, DBIDs subset, DimensionSimilarityMatrix matrix)
DimensionSimilaritycomputeDimensionSimilarites in interface DimensionSimilarity<NumberVector>relation - Relationsubset - DBID subset (for sampling / selection)matrix - Matrix to fillprivate ArrayList<ArrayList<DBIDs>> buildPartitions(Relation<? extends NumberVector> relation, DBIDs ids, int depth, DimensionSimilarityMatrix matrix)
relation - Relation to indexids - IDs to usematrix - Matrix for dimension informationprivate void divide(DBIDArrayIter it, double[] data, ArrayList<DBIDs> idx, int start, int end, int depth, Mean mean)
it - Iterator (will be reset!)data - 1D data, sortedidx - Output indexstart - Interval startend - Interval enddepth - Depthmean - Mean working variable (will be reset!)private void intersectionMatrix(int[][] res,
ArrayList<? extends DBIDs> partsx,
ArrayList<? extends DBIDs> partsy,
int gridsize)
res - Output matrix to fillpartsx - Partitions in first componentpartsy - Partitions in second component.gridsize - Size of partition decompositionprivate double getMCEntropy(int[][] mat,
int[] psizesx,
int[] psizesy,
int size,
int gridsize,
double loggrid)
mat - Partition size matrixpsizesx - Partition sizes on Xpsizesy - Partition sizes on Ysize - Data set sizegridsize - Size of gridsloggrid - Logarithm of grid sizes, for normalizationCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.