@Reference(authors="Elke Achtert, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek", title="Interactive Data Mining with 3D-Parallel-Coordinate-Trees", booktitle="Proc. of the 2013 ACM International Conference on Management of Data (SIGMOD)", url="http://dx.doi.org/10.1145/2463676.2463696") public class HiCSDimensionSimilarity extends Object implements DimensionSimilarity<NumberVector>
Elke Achtert, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek:
Interactive Data Mining with 3D-Parallel-Coordinate-Trees.
Proceedings of the 2013 ACM International Conference on Management of Data
(SIGMOD), New York City, NY, 2013.
F. Keller, E. Müller, and K. Böhm.
HiCS: High Contrast Subspaces for Density-Based Outlier Ranking.
In ICDE, pages 1037–1048, 2012.
Modifier and Type | Class and Description |
---|---|
static class |
HiCSDimensionSimilarity.Parameterizer
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private double |
alpha
Alpha threshold
|
private int |
m
Monte-Carlo iterations
|
private RandomFactory |
rnd
Random generator
|
private GoodnessOfFitTest |
statTest
Statistical test to use
|
Constructor and Description |
---|
HiCSDimensionSimilarity(GoodnessOfFitTest statTest,
int m,
double alpha,
RandomFactory rnd)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
buildOneDimIndexes(Relation<? extends NumberVector> relation,
DBIDs ids,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
private double |
calculateContrast(Relation<? extends NumberVector> relation,
DBIDs subset,
ArrayDBIDs subspaceIndex1,
ArrayDBIDs subspaceIndex2,
int dim1,
int dim2,
Random random)
Calculates the actual contrast of a given subspace
|
void |
computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix)
Compute the dimension similarity matrix
|
private int m
private double alpha
private GoodnessOfFitTest statTest
private RandomFactory rnd
public HiCSDimensionSimilarity(GoodnessOfFitTest statTest, int m, double alpha, RandomFactory rnd)
statTest
- Test functionm
- Number of monte-carlo iterationsalpha
- Alpha thresholdrnd
- Random sourcepublic void computeDimensionSimilarites(Relation<? extends NumberVector> relation, DBIDs subset, DimensionSimilarityMatrix matrix)
DimensionSimilarity
computeDimensionSimilarites
in interface DimensionSimilarity<NumberVector>
relation
- Relationsubset
- DBID subset (for sampling / selection)matrix
- Matrix to fillprivate ArrayList<ArrayDBIDs> buildOneDimIndexes(Relation<? extends NumberVector> relation, DBIDs ids, DimensionSimilarityMatrix matrix)
relation
- Relation to indexids
- IDs to usematrix
- Matrix (for dimension subset)private double calculateContrast(Relation<? extends NumberVector> relation, DBIDs subset, ArrayDBIDs subspaceIndex1, ArrayDBIDs subspaceIndex2, int dim1, int dim2, Random random)
relation
- Data relationsubset
- Subset to processsubspaceIndex1
- Index of first subspacesubspaceIndex2
- Index of second subspacedim1
- First dimensiondim2
- Second dimensionrandom
- Random generatorCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.