@Reference(authors="A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel, M. A. Magnor, and D. A. Keim", title="Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data", booktitle="IEEE Trans. Visualization and Computer Graphics, 2011", url="http://dx.doi.org/10.1109/TVCG.2010.242") public class HSMDimensionSimilarity extends Object implements DimensionSimilarity<NumberVector>
A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel, M. A. Magnor, and
D. A. Keim.
Automated Analytical Methods to Support Visual Exploration of High-
Dimensional Data.
IEEEVisualization and Computer Graphics, 2011.
Modifier and Type | Class and Description |
---|---|
static class |
HSMDimensionSimilarity.Parameterizer
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
static HSMDimensionSimilarity |
STATIC
Static instance.
|
private static int |
STEPS
Angular resolution.
|
private static SinCosTable |
table
Precompute sinus and cosinus
|
Modifier | Constructor and Description |
---|---|
protected |
HSMDimensionSimilarity()
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix)
Compute the dimension similarity matrix
|
private int |
countAboveThreshold(int[][] mat,
double threshold)
Count the number of cells above the threshold.
|
private static void |
drawLine(int x0,
int y0,
int x1,
int y1,
boolean[][] pic)
Draw a line onto the array, using the classic Bresenham algorithm.
|
private int[][] |
houghTransformation(boolean[][] mat)
Perform a hough transformation on the binary image in "mat".
|
private long |
sumMatrix(int[][] mat)
Compute the sum of a matrix.
|
public static final HSMDimensionSimilarity STATIC
private static final int STEPS
private static final SinCosTable table
protected HSMDimensionSimilarity()
public void computeDimensionSimilarites(Relation<? extends NumberVector> relation, DBIDs subset, DimensionSimilarityMatrix matrix)
DimensionSimilarity
computeDimensionSimilarites
in interface DimensionSimilarity<NumberVector>
relation
- Relationsubset
- DBID subset (for sampling / selection)matrix
- Matrix to fillprivate long sumMatrix(int[][] mat)
mat
- Matrixprivate int countAboveThreshold(int[][] mat, double threshold)
mat
- Matrixthreshold
- Thresholdprivate int[][] houghTransformation(boolean[][] mat)
mat
- Binary imageprivate static void drawLine(int x0, int y0, int x1, int y1, boolean[][] pic)
x0
- Start Xy0
- Start Yx1
- End Xy1
- End Ypic
- Picture arrayCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.