
public class PolynomialKernelFunction extends AbstractVectorSimilarityFunction implements PrimitiveDistanceFunction<NumberVector>
| Modifier and Type | Class and Description |
|---|---|
static class |
PolynomialKernelFunction.Parameterizer
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
private double |
bias
Bias of the similarity function.
|
static int |
DEFAULT_DEGREE
The default degree.
|
private int |
degree
Degree of the polynomial kernel function.
|
| Constructor and Description |
|---|
PolynomialKernelFunction(int degree)
Constructor.
|
PolynomialKernelFunction(int degree,
double bias)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
double |
distance(NumberVector fv1,
NumberVector fv2)
Computes the distance between two given DatabaseObjects according to this
distance function.
|
<T extends NumberVector> |
instantiate(Relation<T> database)
Instantiate with a representation to get the actual similarity query.
|
boolean |
isMetric()
Is this distance function metric (in particular, does it satisfy the
triangle equation?)
|
double |
similarity(NumberVector o1,
NumberVector o2)
Computes the similarity between two given DatabaseObjects according to this
similarity function.
|
getInputTypeRestrictionisSymmetricclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetInputTypeRestrictionisSymmetricisSymmetricpublic static final int DEFAULT_DEGREE
private final int degree
private final double bias
public PolynomialKernelFunction(int degree,
double bias)
degree - Kernel degreebias - Bias offsetpublic PolynomialKernelFunction(int degree)
degree - Kernel degreepublic double similarity(NumberVector o1, NumberVector o2)
PrimitiveSimilarityFunctionsimilarity in interface PrimitiveSimilarityFunction<NumberVector>similarity in class AbstractPrimitiveSimilarityFunction<NumberVector>o1 - first DatabaseObjecto2 - second DatabaseObjectpublic boolean isMetric()
DistanceFunctionisMetric in interface DistanceFunction<NumberVector>true when metric.public double distance(NumberVector fv1, NumberVector fv2)
PrimitiveDistanceFunctiondistance in interface PrimitiveDistanceFunction<NumberVector>fv1 - first DatabaseObjectfv2 - second DatabaseObjectpublic <T extends NumberVector> DistanceSimilarityQuery<T> instantiate(Relation<T> database)
SimilarityFunctioninstantiate in interface DistanceFunction<NumberVector>instantiate in interface SimilarityFunction<NumberVector>instantiate in class AbstractPrimitiveSimilarityFunction<NumberVector>database - Representation to useCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.