@Reference(authors="Bagga, A. and Baldwin, B.", title="Entity-based cross-document coreferencing using the Vector Space Model", booktitle="Proc. COLING \'98 Proceedings of the 17th international conference on Computational linguistics", url="http://dx.doi.org/10.3115/980451.980859") public class ClusteringBCubedF1SimilarityFunction extends AbstractPrimitiveSimilarityFunction<Clustering<?>> implements ClusteringDistanceSimilarityFunction, NormalizedSimilarityFunction<Clustering<?>>
Bagga, A. and Baldwin, B.
Entity-based cross-document coreferencing using the Vector Space Model
Proc. COLING '98 Proceedings of the 17th international conference on
Computational linguistics
Modifier and Type | Class and Description |
---|---|
static class |
ClusteringBCubedF1SimilarityFunction.Parameterizer
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
static ClusteringBCubedF1SimilarityFunction |
STATIC
Static instance.
|
Constructor and Description |
---|
ClusteringBCubedF1SimilarityFunction()
Constructor - use the static instance
STATIC ! |
Modifier and Type | Method and Description |
---|---|
double |
distance(Clustering<?> o1,
Clustering<?> o2)
Computes the distance between two given DatabaseObjects according to this
distance function.
|
SimpleTypeInformation<? super Clustering<?>> |
getInputTypeRestriction()
Get the input data type of the function.
|
<T extends Clustering<?>> |
instantiate(Relation<T> relation)
Instantiate with a representation to get the actual similarity query.
|
boolean |
isMetric()
Is this distance function metric (in particular, does it satisfy the
triangle equation?)
|
double |
similarity(Clustering<?> o1,
Clustering<?> o2)
Computes the similarity between two given DatabaseObjects according to this
similarity function.
|
isSymmetric
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
isSymmetric
isSymmetric
public static final ClusteringBCubedF1SimilarityFunction STATIC
public ClusteringBCubedF1SimilarityFunction()
STATIC
!public double similarity(Clustering<?> o1, Clustering<?> o2)
PrimitiveSimilarityFunction
similarity
in interface PrimitiveSimilarityFunction<Clustering<?>>
similarity
in class AbstractPrimitiveSimilarityFunction<Clustering<?>>
o1
- first DatabaseObjecto2
- second DatabaseObjectpublic double distance(Clustering<?> o1, Clustering<?> o2)
PrimitiveDistanceFunction
distance
in interface PrimitiveDistanceFunction<Clustering<?>>
o1
- first DatabaseObjecto2
- second DatabaseObjectpublic boolean isMetric()
DistanceFunction
isMetric
in interface DistanceFunction<Clustering<?>>
true
when metric.public <T extends Clustering<?>> DistanceSimilarityQuery<T> instantiate(Relation<T> relation)
SimilarityFunction
instantiate
in interface DistanceFunction<Clustering<?>>
instantiate
in interface ClusteringDistanceSimilarityFunction
instantiate
in interface SimilarityFunction<Clustering<?>>
instantiate
in class AbstractPrimitiveSimilarityFunction<Clustering<?>>
relation
- Representation to usepublic SimpleTypeInformation<? super Clustering<?>> getInputTypeRestriction()
SimilarityFunction
getInputTypeRestriction
in interface DistanceFunction<Clustering<?>>
getInputTypeRestriction
in interface PrimitiveDistanceFunction<Clustering<?>>
getInputTypeRestriction
in interface PrimitiveSimilarityFunction<Clustering<?>>
getInputTypeRestriction
in interface SimilarityFunction<Clustering<?>>
getInputTypeRestriction
in class AbstractPrimitiveSimilarityFunction<Clustering<?>>
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.