Modifier and Type | Method and Description |
---|---|
WritableDataStore<KNNList> |
KNNJoin.run(Relation<V> relation)
Joins in the given spatial database to each object its k-nearest neighbors.
|
Modifier and Type | Method and Description |
---|---|
private void |
DeLiClu.expandLeafNodes(SpatialPrimitiveDistanceFunction<NV> distFunction,
DeLiCluNode node1,
DeLiCluNode node2,
DataStore<KNNList> knns)
Expands the specified leaf nodes.
|
private void |
DeLiClu.expandNodes(DeLiCluTree index,
SpatialPrimitiveDistanceFunction<NV> distFunction,
DeLiClu.SpatialObjectPair nodePair,
DataStore<KNNList> knns)
Expands the spatial nodes of the specified pair.
|
private void |
DeLiClu.reinsertExpanded(SpatialPrimitiveDistanceFunction<NV> distFunction,
DeLiCluTree index,
IndexTreePath<DeLiCluEntry> path,
DataStore<KNNList> knns)
Reinserts the objects of the already expanded nodes.
|
private void |
DeLiClu.reinsertExpanded(SpatialPrimitiveDistanceFunction<NV> distFunction,
DeLiCluTree index,
List<IndexTreePath<DeLiCluEntry>> path,
int pos,
DeLiCluEntry parentEntry,
DataStore<KNNList> knns) |
Modifier and Type | Field and Description |
---|---|
(package private) SharedObject<? extends KNNList> |
KNNWeightProcessor.input
KNN query object
|
(package private) SharedObject.Instance<? extends KNNList> |
KNNWeightProcessor.Instance.input
kNN query
|
Modifier and Type | Method and Description |
---|---|
void |
KNNWeightProcessor.connectKNNInput(SharedObject<? extends KNNList> input)
Connect the input channel.
|
Constructor and Description |
---|
KNNWeightProcessor.Instance(int k,
SharedObject.Instance<? extends KNNList> input,
SharedDouble.Instance store)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DataStore<? extends KNNList> |
SimplifiedLRDProcessor.knns
KNN store
|
private DataStore<? extends KNNList> |
LRDProcessor.knns
KNN store
|
private DataStore<? extends KNNList> |
LOFProcessor.knns
KNN store
|
Constructor and Description |
---|
LOFProcessor(DataStore<? extends KNNList> knns,
DoubleDataStore lrds,
boolean noself)
Constructor.
|
LRDProcessor(DataStore<? extends KNNList> knns,
DoubleDataStore kdists)
Constructor.
|
SimplifiedLRDProcessor(DataStore<? extends KNNList> knns)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static KNNList |
QueryUtil.applySqrt(KNNList knnList)
Apply the square root function to each value in the list.
|
Modifier and Type | Method and Description |
---|---|
static KNNList |
QueryUtil.applySqrt(KNNList knnList)
Apply the square root function to each value in the list.
|
Modifier and Type | Method and Description |
---|---|
static KNNList |
DBIDUtil.subList(KNNList list,
int k)
Get a subset of the KNN result.
|
KNNList |
KNNHeap.toKNNList()
Serialize to a
KNNList . |
Modifier and Type | Method and Description |
---|---|
static KNNHeap |
DBIDUtil.newHeap(KNNList exist)
Build a new heap from a given list.
|
KNNHeap |
DBIDFactory.newHeap(KNNList exist)
Build a new heap from a given list.
|
static KNNList |
DBIDUtil.subList(KNNList list,
int k)
Get a subset of the KNN result.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNSubList
Sublist of an existing result to contain only the first k elements.
|
Modifier and Type | Field and Description |
---|---|
private KNNList |
KNNSubList.inner
Wrapped inner result.
|
Constructor and Description |
---|
KNNSubList(KNNList inner,
int k)
Constructor.
|
Modifier and Type | Interface and Description |
---|---|
interface |
IntegerDBIDKNNList
Combination interface for KNNList and IntegerDBIDs.
|
Modifier and Type | Class and Description |
---|---|
class |
DoubleIntegerDBIDKNNList
kNN list, but without automatic sorting.
|
(package private) class |
DoubleIntegerDBIDListKNNHeap
Track the k nearest neighbors, with insertion sort to ensure the correct
order.
|
(package private) class |
DoubleIntegerDBIDPairKNNListHeap
KNN Heap implemented using a list of DoubleInt pair objects.
|
class |
IntegerDBIDKNNSubList
Sublist of an existing result to contain only the first k elements.
|
Modifier and Type | Method and Description |
---|---|
KNNList |
DoubleIntegerDBIDPairKNNListHeap.toKNNList() |
KNNList |
DoubleIntegerDBIDListKNNHeap.toKNNList() |
Modifier and Type | Method and Description |
---|---|
KNNHeap |
AbstractIntegerDBIDFactory.newHeap(KNNList exist) |
Modifier and Type | Method and Description |
---|---|
KNNList |
PreprocessorKNNQuery.getKNNForDBID(DBIDRef id,
int k) |
KNNList |
LinearScanPrimitiveDistanceKNNQuery.getKNNForDBID(DBIDRef id,
int k) |
KNNList |
LinearScanEuclideanDistanceKNNQuery.getKNNForDBID(DBIDRef id,
int k) |
KNNList |
LinearScanDistanceKNNQuery.getKNNForDBID(DBIDRef id,
int k) |
KNNList |
KNNQuery.getKNNForDBID(DBIDRef id,
int k)
Get the k nearest neighbors for a particular id.
|
KNNList |
AbstractDistanceKNNQuery.getKNNForDBID(DBIDRef id,
int k) |
KNNList |
PreprocessorKNNQuery.getKNNForObject(O obj,
int k) |
KNNList |
LinearScanPrimitiveDistanceKNNQuery.getKNNForObject(O obj,
int k) |
KNNList |
LinearScanEuclideanDistanceKNNQuery.getKNNForObject(O obj,
int k) |
KNNList |
LinearScanDistanceKNNQuery.getKNNForObject(O obj,
int k) |
KNNList |
KNNQuery.getKNNForObject(O obj,
int k)
Get the k nearest neighbors for a particular id.
|
abstract KNNList |
AbstractDistanceKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
List<KNNList> |
PreprocessorKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
LinearScanPrimitiveDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
LinearScanEuclideanDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
LinearScanDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<? extends KNNList> |
KNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method
|
List<? extends KNNList> |
AbstractDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
KNNList |
InMemoryIDistanceIndex.IDistanceKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
KNNList |
InMemoryInvertedIndex.CosineKNNQuery.getKNNForObject(V obj,
int k) |
KNNList |
InMemoryInvertedIndex.ArcCosineKNNQuery.getKNNForObject(V obj,
int k) |
Modifier and Type | Method and Description |
---|---|
KNNList |
InMemoryLSHIndex.Instance.LSHKNNQuery.getKNNForObject(V obj,
int k) |
Modifier and Type | Method and Description |
---|---|
KNNList |
AbstractMaterializeKNNPreprocessor.get(DBIDRef id)
Get the k nearest neighbors.
|
KNNList |
MaterializeKNNAndRKNNPreprocessor.getKNN(DBID id)
Returns the materialized kNNs of the specified id.
|
KNNList |
SpacefillingKNNPreprocessor.SpaceFillingKNNQuery.getKNNForDBID(DBIDRef id,
int k) |
KNNList |
NaiveProjectedKNNPreprocessor.NaiveProjectedKNNQuery.getKNNForDBID(DBIDRef id,
int k) |
KNNList |
SpacefillingKNNPreprocessor.SpaceFillingKNNQuery.getKNNForObject(O obj,
int k) |
KNNList |
NaiveProjectedKNNPreprocessor.NaiveProjectedKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
List<KNNList> |
SpacefillingKNNPreprocessor.SpaceFillingKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
NaiveProjectedKNNPreprocessor.NaiveProjectedKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
protected ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.affectedkNN(List<? extends KNNList> extract,
DBIDs remove)
Extracts and removes the DBIDs in the given collections.
|
Modifier and Type | Method and Description |
---|---|
protected KNNList |
KNNQueryFilteredPCAIndex.objectsForPCA(DBIDRef id) |
Modifier and Type | Method and Description |
---|---|
KNNList |
ProjectedIndex.ProjectedKNNQuery.getKNNForDBID(DBIDRef id,
int k) |
KNNList |
ProjectedIndex.ProjectedKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
List<? extends KNNList> |
ProjectedIndex.ProjectedKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
KNNList |
SimplifiedCoverTree.CoverTreeKNNQuery.getKNNForObject(O obj,
int k) |
KNNList |
CoverTree.CoverTreeKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
protected Map<DBID,KNNList> |
AbstractMkTree.batchNN(N node,
DBIDs ids,
int kmax)
Deprecated.
Change to use by-object NN lookups instead.
|
Modifier and Type | Method and Description |
---|---|
protected abstract void |
AbstractMkTreeUnified.kNNdistanceAdjustment(E entry,
Map<DBID,KNNList> knnLists)
Performs a distance adjustment in the subtree of the specified root entry.
|
Modifier and Type | Method and Description |
---|---|
private void |
MkAppTree.adjustApproximatedKNNDistances(MkAppEntry entry,
Map<DBID,KNNList> knnLists)
Adjusts the knn distance in the subtree of the specified root entry.
|
private double[] |
MkAppTree.getMeanKNNList(DBIDs ids,
Map<DBID,KNNList> knnLists) |
Modifier and Type | Method and Description |
---|---|
private void |
MkCoPTree.approximateKnnDistances(MkCoPLeafEntry entry,
KNNList knnDistances)
Computes logarithmic skew (fractal dimension ie. m) and in kappx[0] and
kappx[1] the non-logarithmic values of the approximated first and last
nearest neighbor distances
|
Modifier and Type | Method and Description |
---|---|
private void |
MkCoPTree.adjustApproximatedKNNDistances(MkCoPEntry entry,
Map<DBID,KNNList> knnLists)
Adjusts the knn distance in the subtree of the specified root entry.
|
Modifier and Type | Method and Description |
---|---|
protected void |
MkMaxTree.kNNdistanceAdjustment(MkMaxEntry entry,
Map<DBID,KNNList> knnLists)
Adjusts the knn distance in the subtree of the specified root entry.
|
Modifier and Type | Method and Description |
---|---|
protected void |
MkTabTree.kNNdistanceAdjustment(MkTabEntry entry,
Map<DBID,KNNList> knnLists) |
Modifier and Type | Method and Description |
---|---|
KNNList |
MetricalIndexKNNQuery.getKNNForObject(O q,
int k) |
Modifier and Type | Method and Description |
---|---|
KNNList |
SmallMemoryKDTree.KDTreeKNNQuery.getKNNForObject(O obj,
int k) |
KNNList |
MinimalisticMemoryKDTree.KDTreeKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
KNNList |
RStarTreeKNNQuery.getKNNForDBID(DBIDRef id,
int k) |
KNNList |
RStarTreeKNNQuery.getKNNForObject(O obj,
int k) |
KNNList |
EuclideanRStarTreeKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
List<KNNList> |
RStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
EuclideanRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
private void |
RdKNNTree.adjustKNNDistance(RdKNNEntry entry,
ArrayDBIDs ids,
List<? extends KNNList> knnLists)
Adjusts the knn distance in the subtree of the specified root entry.
|
Modifier and Type | Method and Description |
---|---|
KNNList |
VAFile.VAFileKNNQuery.getKNNForObject(V query,
int k) |
KNNList |
PartialVAFile.PartialVAFileKNNQuery.getKNNForObject(V query,
int k) |
protected KNNList |
PartialVAFile.PartialVAFileKNNQuery.retrieveAccurateDistances(List<PartialVAFile.PartialVACandidate> sortedCandidates,
int k,
long[] subspace,
V query) |
Modifier and Type | Field and Description |
---|---|
(package private) SharedObject<? extends KNNList> |
KDistanceProcessor.input
KNN query object
|
(package private) SharedObject.Instance<? extends KNNList> |
KDistanceProcessor.Instance.input
kNN query
|
(package private) SharedObject<KNNList> |
KNNProcessor.out
Output channel to write to
|
(package private) SharedObject.Instance<KNNList> |
KNNProcessor.Instance.out
Output data store
|
Modifier and Type | Method and Description |
---|---|
void |
KDistanceProcessor.connectKNNInput(SharedObject<? extends KNNList> input)
Connect the input channel.
|
void |
KNNProcessor.connectKNNOutput(SharedObject<KNNList> output)
Connect the output channel.
|
Constructor and Description |
---|
KDistanceProcessor.Instance(int k,
SharedObject.Instance<? extends KNNList> input,
SharedDouble.Instance store)
Constructor.
|
KNNProcessor.Instance(int k,
KNNQuery<O> knnq,
SharedObject.Instance<KNNList> out)
Constructor.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.