See: Description
Interface | Description |
---|---|
ComputeKNNOutlierScores.AlgRunner |
Run an algorithm for a given k.
|
Class | Description |
---|---|
ComputeKNNOutlierScores<O extends NumberVector> |
Application that runs a series of kNN-based algorithms on a data set, for
building an ensemble in a second step.
|
ComputeKNNOutlierScores.Parameterizer<O extends NumberVector> |
Parameterization class.
|
EvaluatePrecomputedOutlierScores |
Class to load an outlier detection summary file, as produced by
ComputeKNNOutlierScores , and compute popular evaluation metrics for
it. |
EvaluatePrecomputedOutlierScores.Parameterizer |
Parameterization class.
|
GreedyEnsembleExperiment |
Class to load an outlier detection summary file, as produced by
ComputeKNNOutlierScores , and compute a naive ensemble for it. |
GreedyEnsembleExperiment.Parameterizer |
Parameterization class.
|
VisualizePairwiseGainMatrix |
Class to load an outlier detection summary file, as produced by
ComputeKNNOutlierScores , and compute a matrix with the pairwise
gains. |
VisualizePairwiseGainMatrix.Parameterizer |
Parameterization class.
|
Enum | Description |
---|---|
GreedyEnsembleExperiment.Distance |
Distance modes.
|
Greedy ensembles for outlier detection.
This package contains code that was used for the greedy ensemble experiment in
E. Schubert, R. Wojdanowski, A. Zimek, H.-P. Kriegel
On Evaluation of Outlier Rankings and Outlier Scores
In Proceedings of the 12th SIAM International Conference on Data Mining (SDM), Anaheim, CA, 2012.
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.