
@Reference(authors="S. D. Lee, B. Kao, R. Cheng", title="Reducing UK-means to K-means", booktitle="ICDM Data Mining Workshops, 2007", url="http://dx.doi.org/10.1109/ICDMW.2007.40") public class CKMeans extends CenterOfMassMetaClustering<Clustering<KMeansModel>>
S. D. Lee, B. Kao, R. Cheng
Reducing UK-means to K-means
ICDM Data Mining Workshops, 2007
| Modifier and Type | Class and Description |
|---|---|
static class |
CKMeans.Parameterizer
Parameterization class, based on k-means.
|
| Modifier and Type | Field and Description |
|---|---|
private static Logging |
LOG
CLass logger.
|
inner| Constructor and Description |
|---|
CKMeans(KMeans<?,KMeansModel> kmeans)
Constructor that uses an arbitrary k-means algorithm.
|
CKMeans(NumberVectorDistanceFunction<? super NumberVector> distanceFunction,
int k,
int maxiter,
KMeansInitialization<? super NumberVector> initializer)
Constructor that uses Lloyd's k-means algorithm.
|
| Modifier and Type | Method and Description |
|---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
getInputTypeRestriction, run, runClusteringAlgorithmmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
public CKMeans(KMeans<?,KMeansModel> kmeans)
kmeans - K-Means algorithm to use.public CKMeans(NumberVectorDistanceFunction<? super NumberVector> distanceFunction, int k, int maxiter, KMeansInitialization<? super NumberVector> initializer)
distanceFunction - Distance functions for centersk - K parametermaxiter - Maximum number of iterationsinitializer - Initializerprotected Logging getLogger()
AbstractAlgorithmgetLogger in class CenterOfMassMetaClustering<Clustering<KMeansModel>>Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.