See: Description
Class | Description |
---|---|
AddSingleScale |
Pseudo "algorithm" that computes the global min/max for a relation across all
attributes.
|
AddSingleScale.Parameterizer |
Parameterization class.
|
AveragePrecisionAtK<O> |
Evaluate a distance functions performance by computing the average precision
at k, when ranking the objects by distance.
|
AveragePrecisionAtK.Parameterizer<O> |
Parameterization class.
|
DistanceStatisticsWithClasses<O> |
Algorithm to gather statistics over the distance distribution in the data
set.
|
DistanceStatisticsWithClasses.Parameterizer<O> |
Parameterization class.
|
EvaluateRankingQuality<V extends NumberVector> |
Evaluate a distance function with respect to kNN queries.
|
EvaluateRankingQuality.Parameterizer<V extends NumberVector> |
Parameterization class.
|
HopkinsStatisticClusteringTendency |
The Hopkins Statistic of Clustering Tendency measures the probability that a
data set is generated by a uniform data distribution.
|
HopkinsStatisticClusteringTendency.Parameterizer |
Parameterization class.
|
MeanAveragePrecisionForDistance<O> |
Evaluate a distance functions performance by computing the mean average
precision, when ranking the objects by distance.
|
MeanAveragePrecisionForDistance.MAPResult |
Result object for MAP scores.
|
MeanAveragePrecisionForDistance.Parameterizer<O> |
Parameterization class.
|
RankingQualityHistogram<O> |
Evaluate a distance function with respect to kNN queries.
|
RankingQualityHistogram.Parameterizer<O> |
Parameterization class.
|
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data (e.g. compute distributions, distance distributions etc.)Copyright © 2014 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.