
O - the type of DatabaseObjects handled by the algorithm@Title(value="OPTICS: Density-Based Hierarchical Clustering") @Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minPts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander", title="OPTICS: Ordering Points to Identify the Clustering Structure", booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD \'99)", url="http://dx.doi.org/10.1145/304181.304187") @Alias(value={"OPTICS","de.lmu.ifi.dbs.elki.algorithm.clustering.OPTICS"}) public class OPTICS<O> extends AbstractDistanceBasedAlgorithm<O,ClusterOrderResult<DoubleDistanceClusterOrderEntry>> implements OPTICSTypeAlgorithm<DoubleDistanceClusterOrderEntry>
M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander:
OPTICS: Ordering Points to Identify the Clustering Structure.
In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '99).
| Modifier and Type | Class and Description |
|---|---|
static class |
OPTICS.Parameterizer<O>
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
private double |
epsilon
Holds the maximum distance to search for objects (performance parameter)
|
private static Logging |
LOG
The logger for this class.
|
private int |
minpts
The density threshold, in number of points.
|
private ModifiableDBIDs |
processedIDs
Holds a set of processed ids.
|
DISTANCE_FUNCTION_ID| Constructor and Description |
|---|
OPTICS(DistanceFunction<? super O> distanceFunction,
double epsilon,
int minpts)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
protected void |
expandClusterOrder(ClusterOrderResult<DoubleDistanceClusterOrderEntry> clusterOrder,
Relation<O> database,
RangeQuery<O> rangeQuery,
DBID objectID,
double epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder.
|
Class<? super DoubleDistanceClusterOrderEntry> |
getEntryType()
Get the entry type.
|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query.
|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
int |
getMinPts()
Get the minpts value used.
|
ClusterOrderResult<DoubleDistanceClusterOrderEntry> |
run(Relation<O> relation)
Run OPTICS on the database.
|
getDistanceFunctionmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
private double epsilon
private int minpts
private ModifiableDBIDs processedIDs
public OPTICS(DistanceFunction<? super O> distanceFunction, double epsilon, int minpts)
distanceFunction - Distance functionepsilon - Epsilon valueminpts - Minpts valuepublic ClusterOrderResult<DoubleDistanceClusterOrderEntry> run(Relation<O> relation)
relation - Relationprotected void expandClusterOrder(ClusterOrderResult<DoubleDistanceClusterOrderEntry> clusterOrder, Relation<O> database, RangeQuery<O> rangeQuery, DBID objectID, double epsilon, FiniteProgress progress)
clusterOrder - Cluster order result to expanddatabase - the database on which the algorithm is runrangeQuery - the range query to useobjectID - the currently processed objectepsilon - Query epsilonprogress - the progress object to actualize the current progress if
the algorithmpublic int getMinPts()
OPTICSTypeAlgorithmgetMinPts in interface OPTICSTypeAlgorithm<DoubleDistanceClusterOrderEntry>public Class<? super DoubleDistanceClusterOrderEntry> getEntryType()
OPTICSTypeAlgorithmgetEntryType in interface OPTICSTypeAlgorithm<DoubleDistanceClusterOrderEntry>public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<ClusterOrderResult<DoubleDistanceClusterOrderEntry>>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<ClusterOrderResult<DoubleDistanceClusterOrderEntry>>Copyright © 2014 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.