| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | 
 Algorithms suitable as a task for the  
KDDTask main routine. | 
| de.lmu.ifi.dbs.elki.database.query.knn | 
 Prepared queries for k nearest neighbor (kNN) queries. 
 | 
| de.lmu.ifi.dbs.elki.index | 
 Index structure implementations 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants | 
 M-Tree and variants. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees | 
 Metrical index structures based on the concepts of the M-Tree
 supporting processing of reverse k nearest neighbor queries by
 using the k-nn distances of the entries. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query | 
 Classes for performing queries (knn, range, ...) on metrical trees. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query | 
 Queries on the R-Tree family of indexes: kNN and range queries. 
 | 
| de.lmu.ifi.dbs.elki.utilities.datastructures.heap | 
 Heap structures and variations such as bounded priority heaps. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private List<KNNHeap<D>> | 
KNNJoin.initHeaps(SpatialPrimitiveDistanceFunction<V,D> distFunction,
         boolean doubleOptimize,
         N pr)  | 
| Modifier and Type | Method and Description | 
|---|---|
private D | 
KNNJoin.computeStopDistance(List<KNNHeap<D>> heaps)
Compute the maximum stop distance 
 | 
private void | 
KNNJoin.processDataPagesDouble(SpatialPrimitiveDoubleDistanceFunction<? super V> df,
                      N pr,
                      N ps,
                      List<KNNHeap<DoubleDistance>> pr_heaps,
                      List<KNNHeap<DoubleDistance>> ps_heaps)
Processes the two data pages pr and ps and determines the k-nearest
 neighbors of pr in ps. 
 | 
private void | 
KNNJoin.processDataPagesDouble(SpatialPrimitiveDoubleDistanceFunction<? super V> df,
                      N pr,
                      N ps,
                      List<KNNHeap<DoubleDistance>> pr_heaps,
                      List<KNNHeap<DoubleDistance>> ps_heaps)
Processes the two data pages pr and ps and determines the k-nearest
 neighbors of pr in ps. 
 | 
private void | 
KNNJoin.processDataPagesOptimize(SpatialPrimitiveDistanceFunction<V,D> distFunction,
                        boolean doubleOptimize,
                        List<KNNHeap<D>> pr_heaps,
                        List<KNNHeap<D>> ps_heaps,
                        N pr,
                        N ps)
Processes the two data pages pr and ps and determines the k-nearest
 neighbors of pr in ps. 
 | 
private void | 
KNNJoin.processDataPagesOptimize(SpatialPrimitiveDistanceFunction<V,D> distFunction,
                        boolean doubleOptimize,
                        List<KNNHeap<D>> pr_heaps,
                        List<KNNHeap<D>> ps_heaps,
                        N pr,
                        N ps)
Processes the two data pages pr and ps and determines the k-nearest
 neighbors of pr in ps. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
KNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<D>> heaps)
Bulk query method configured by a map. 
 | 
void | 
PreprocessorKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<D>> heaps)  | 
void | 
LinearScanKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<D>> heaps)  | 
void | 
LinearScanPrimitiveDistanceKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<D>> heaps)  | 
private void | 
LinearScanKNNQuery.linearScanBatchKNN(ArrayDBIDs ids,
                  List<KNNHeap<D>> heaps)
Linear batch knn for arbitrary distance functions. 
 | 
protected void | 
LinearScanPrimitiveDistanceKNNQuery.linearScanBatchKNN(List<O> objs,
                  List<KNNHeap<D>> heaps)
Perform a linear scan batch kNN for primitive distance functions. 
 | 
protected void | 
LinearScanRawDoubleDistanceKNNQuery.linearScanBatchKNN(List<O> objs,
                  List<KNNHeap<DoubleDistance>> heaps)  | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
AbstractRefiningIndex.AbstractKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<D>> heaps)  | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
AbstractMTree.doKNNQuery(DBID q,
          KNNHeap<D> knnList)
Performs a k-nearest neighbor query for the given FeatureVector with the
 given parameter k and the according distance function. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
AbstractMTree.batchNN(N node,
       DBIDs ids,
       Map<DBID,KNNHeap<D>> knnLists)
Deprecated. 
 
Change to use by-object NN lookups instead. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected abstract void | 
AbstractMkTreeUnified.kNNdistanceAdjustment(E entry,
                     Map<DBID,KNNHeap<D>> knnLists)
Performs a distance adjustment in the subtree of the specified root entry. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
MkMaxTree.preInsert(MkMaxEntry<D> q,
         MkMaxEntry<D> nodeEntry,
         KNNHeap<D> knns_q)
Adapts the knn distances before insertion of entry q. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
MkMaxTree.kNNdistanceAdjustment(MkMaxEntry<D> entry,
                     Map<DBID,KNNHeap<D>> knnLists)
Adjusts the knn distance in the subtree of the specified root entry. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
MkTabTree.kNNdistanceAdjustment(MkTabEntry<D> entry,
                     Map<DBID,KNNHeap<D>> knnLists)  | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
MetricalIndexKNNQuery.doKNNQuery(O q,
          KNNHeap<D> knnList)
Performs a k-nearest neighbor query for the given FeatureVector with the
 given parameter k and the according distance function. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
MetricalIndexKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<D>> heaps)  | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
GenericRStarTreeKNNQuery.doKNNQuery(O object,
          KNNHeap<D> knnList)
Performs a k-nearest neighbor query for the given NumberVector with the
 given parameter k and the according distance function. 
 | 
protected void | 
DoubleDistanceRStarTreeKNNQuery.doKNNQuery(O object,
          KNNHeap<DoubleDistance> knnList)
Performs a k-nearest neighbor query for the given NumberVector with the
 given parameter k and the according distance function. 
 | 
private D | 
GenericRStarTreeKNNQuery.expandNode(O object,
          KNNHeap<D> knnList,
          Heap<GenericDistanceSearchCandidate<D>> pq,
          D maxDist,
          Integer nodeID)  | 
private double | 
DoubleDistanceRStarTreeKNNQuery.expandNode(O object,
          KNNHeap<DoubleDistance> knnList,
          Heap<DoubleDistanceSearchCandidate> pq,
          double maxDist,
          Integer nodeID)  | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
GenericRStarTreeKNNQuery.batchNN(AbstractRStarTreeNode<?,?> node,
       Map<DBID,KNNHeap<D>> knnLists)
Performs a batch knn query. 
 | 
protected void | 
DoubleDistanceRStarTreeKNNQuery.batchNN(AbstractRStarTreeNode<?,?> node,
       Map<DBID,KNNHeap<DoubleDistance>> knnLists)
Performs a batch knn query. 
 | 
void | 
GenericRStarTreeKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<D>> heaps)  | 
void | 
DoubleDistanceRStarTreeKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<DoubleDistance>> heaps)  | 
| Constructor and Description | 
|---|
KNNList(KNNHeap<D> heap)
Constructor, to be called from KNNHeap only. 
 |