| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | 
 Algorithms suitable as a task for the  
KDDTask main routine. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | 
 Correlation clustering algorithms 
 | 
| de.lmu.ifi.dbs.elki.data.model | 
 Cluster models classes for various algorithms. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | 
 Distance functions using correlations. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.subspace | 
 Distance functions based on subspaces. 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.localpca | 
 Index using a preprocessed local PCA. 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj | 
 Index using a preprocessed local subspaces. 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | 
 Principal Component Analysis (PCA) and Eigenvector processing. 
 | 
| Class and Description | 
|---|
| PCAFilteredRunner
 PCA runner that will do dimensionality reduction. 
 | 
| Class and Description | 
|---|
| PCARunner
 Class to run PCA on given data. 
 | 
| Class and Description | 
|---|
| PCAFilteredResult
 Result class for a filtered PCA. 
 | 
| Class and Description | 
|---|
| PCAFilteredResult
 Result class for a filtered PCA. 
 | 
| Class and Description | 
|---|
| PCAFilteredResult
 Result class for a filtered PCA. 
 | 
| Class and Description | 
|---|
| PCAFilteredResult
 Result class for a filtered PCA. 
 | 
| PCAFilteredRunner
 PCA runner that will do dimensionality reduction. 
 | 
| Class and Description | 
|---|
| PCAFilteredResult
 Result class for a filtered PCA. 
 | 
| PCAFilteredRunner
 PCA runner that will do dimensionality reduction. 
 | 
| Class and Description | 
|---|
| AbstractCovarianceMatrixBuilder
 Abstract class with the task of computing a Covariance matrix to be used in PCA. 
 | 
| CompositeEigenPairFilter
 The  
CompositeEigenPairFilter can be used to build a chain of
 eigenpair filters. | 
| CovarianceMatrixBuilder
 Interface for computing covariance matrixes on a data set. 
 | 
| DropEigenPairFilter
 The "drop" filter looks for the largest drop in normalized relative
 eigenvalues. 
 | 
| EigenPairFilter
 The eigenpair filter is used to filter eigenpairs (i.e. eigenvectors
 and their corresponding eigenvalues) which are a result of a
 Variance Analysis Algorithm, e.g. 
 | 
| FilteredEigenPairs
 Encapsulates weak and strong eigenpairs that have been filtered out
 by an eigenpair filter. 
 | 
| FirstNEigenPairFilter
 The FirstNEigenPairFilter marks the n highest eigenpairs as strong
 eigenpairs, where n is a user specified number. 
 | 
| LimitEigenPairFilter
 The LimitEigenPairFilter marks all eigenpairs having an (absolute) eigenvalue
 below the specified threshold (relative or absolute) as weak eigenpairs, the
 others are marked as strong eigenpairs. 
 | 
| PCAFilteredAutotuningRunner
 Performs a self-tuning local PCA based on the covariance matrices of given
 objects. 
 | 
| PCAFilteredResult
 Result class for a filtered PCA. 
 | 
| PCAFilteredRunner
 PCA runner that will do dimensionality reduction. 
 | 
| PCAFilteredRunner.Parameterizer
 Parameterization class. 
 | 
| PCAResult
 Result class for Principal Component Analysis with some convenience methods 
 | 
| PCARunner
 Class to run PCA on given data. 
 | 
| PCARunner.Parameterizer
 Parameterization class. 
 | 
| PercentageEigenPairFilter
 The PercentageEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
 higher than the given percentage of the sum of all eigenvalues as strong
 eigenpairs. 
 | 
| ProgressiveEigenPairFilter
 The ProgressiveEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
 higher than the given percentage of the sum of all eigenvalues as strong
 eigenpairs. 
 | 
| RelativeEigenPairFilter
 The RelativeEigenPairFilter sorts the eigenpairs in descending order of their
 eigenvalues and marks the first eigenpairs who are a certain factor above the
 average of the remaining eigenvalues. 
 | 
| SignificantEigenPairFilter
 The SignificantEigenPairFilter sorts the eigenpairs in descending order of
 their eigenvalues and chooses the contrast of an Eigenvalue to the remaining
 Eigenvalues is maximal. 
 | 
| WeakEigenPairFilter
 The WeakEigenPairFilter sorts the eigenpairs in descending order of their
 eigenvalues and returns the first eigenpairs who are above the average mark
 as "strong", the others as "weak". 
 | 
WeightedCovarianceMatrixBuilder
CovarianceMatrixBuilder with weights. |