| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | 
 Algorithms suitable as a task for the  
KDDTask main routine. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering | 
 Clustering algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier | 
 Outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | 
 Spatial outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | 
 Subspace outlier detection methods. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.statistics | 
 Statistical analysis algorithms
 
  The algorithms in this package perform statistical analysis of the data
  (e.g. compute distributions, distance distributions etc.) 
 | 
| de.lmu.ifi.dbs.elki.application.cache | 
 Utility applications for the persistence layer such as distance cache builders. 
 | 
| de.lmu.ifi.dbs.elki.application.greedyensemble | 
 Greedy ensembles for outlier detection. 
 | 
| de.lmu.ifi.dbs.elki.application.visualization | 
 Visualization applications in ELKI. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.adapter | 
 Distance functions deriving distances from e.g. similarity measures 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.external | 
 Distance functions using external data sources. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancevalue | 
 Distance values, i.e. object storing an actual distance value along with
 comparison functions and value parsers. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction | 
 Similarity functions. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.similaritymatrix | 
 Render a distance matrix to visualize a clustering-distance-combination. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | 
 Principal Component Analysis (PCA) and Eigenvector processing. 
 | 
| de.lmu.ifi.dbs.elki.visualization.opticsplot | 
 Code for drawing OPTICS plots 
 | 
| de.lmu.ifi.dbs.elki.visualization.svg | 
 Base SVG functionality (generation, markers, thumbnails, export, ...). 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.index | 
 Visualizers for index structures based on 2D projections. 
 | 
| tutorial.outlier | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MaterializeDistances<O,D extends NumberDistance<D,?>>
Algorithm to materialize all the distances in a data set. 
 | 
static class  | 
MaterializeDistances.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OPTICSXi<N extends NumberDistance<N,?>>
Class to handle OPTICS Xi extraction. 
 | 
static class  | 
OPTICSXi.Parameterizer<D extends NumberDistance<D,?>>
Parameterization class. 
 | 
private static class  | 
OPTICSXi.SteepScanPosition<N extends NumberDistance<N,?>>
Position when scanning for steep areas 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>>
K-Means++ initialization for k-means. 
 | 
static class  | 
KMeansPlusPlusInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
KMedoidsEM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using a "bulk" variation of the
 "Partitioning Around Medoids" approach. 
 | 
static class  | 
KMedoidsEM.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
KMedoidsPAM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using the
 "Partitioning Around Medoids" approach. 
 | 
static class  | 
KMedoidsPAM.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
PAMInitialMeans<V,D extends NumberDistance<D,?>>
PAM initialization for k-means (and of course, PAM). 
 | 
static class  | 
PAMInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ALOCI<O extends NumberVector<O,?>,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "approximate Local Correlation Integral". 
 | 
static class  | 
ALOCI.Parameterizer<O extends NumberVector<O,?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
INFLO<O,D extends NumberDistance<D,?>>
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
 Outliers using Symmetric Relationship
 
 Reference:  
Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc.  | 
static class  | 
INFLO.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
KNNOutlier<O,D extends NumberDistance<D,?>>
 Outlier Detection based on the distance of an object to its k nearest
 neighbor. 
 | 
static class  | 
KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
KNNWeightOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the accumulated distances of a point to its k
 nearest neighbors. 
 | 
static class  | 
KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
LDOF<O,D extends NumberDistance<D,?>>
 Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
 Database. 
 | 
static class  | 
LDOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
LOCI<O,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "Local Correlation Integral". 
 | 
static class  | 
LOCI.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
LOF<O,D extends NumberDistance<D,?>>
 Algorithm to compute density-based local outlier factors in a database based
 on a specified parameter  
LOF.K_ID (-lof.k). | 
static class  | 
LOF.LOFResult<O,D extends NumberDistance<D,?>>
Encapsulates information like the neighborhood, the LRD and LOF values of
 the objects during a run of the  
LOF algorithm. | 
static class  | 
LOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
LoOP<O,D extends NumberDistance<D,?>>
LoOP: Local Outlier Probabilities
 
 Distance/density based algorithm similar to LOF to detect outliers, but with
 statistical methods to achieve better result stability. 
 | 
static class  | 
LoOP.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
OnlineLOF<O,D extends NumberDistance<D,?>>
Incremental version of the  
LOF Algorithm, supports insertions and
 removals. | 
static class  | 
OnlineLOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
OPTICSOF<O,D extends NumberDistance<D,?>>
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
 Outliers in a database. 
 | 
static class  | 
OPTICSOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
 provides the Reference-Based Outlier Detection algorithm, an algorithm that
 computes kNN distances approximately, using reference points. 
 | 
static class  | 
ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private D | 
LOCI.rmax
Holds the value of  
LOCI.RMAX_ID. | 
protected D | 
LOCI.Parameterizer.rmax  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>
Abstract base class for distance-based spatial outlier detection methods. 
 | 
static class  | 
AbstractDistanceBasedSpatialOutlier.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers. 
 | 
static class  | 
CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class 
 | 
class  | 
CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks. 
 | 
static class  | 
CTLuRandomWalkEC.Parameterizer<N,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
SLOM<N,O,D extends NumberDistance<D,?>>
SLOM: a new measure for local spatial outliers
 
 
 Reference: 
Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero.  | 
static class  | 
SLOM.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
SOF<N,O,D extends NumberDistance<D,?>>
The Spatial Outlier Factor (SOF) is a spatial
  
LOF variation. | 
static class  | 
SOF.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
SOD<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Subspace Outlier Degree. 
 | 
static class  | 
SOD.Parameterizer<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AveragePrecisionAtK<V,D extends NumberDistance<D,?>>
Evaluate a distance functions performance by computing the average precision
 at k, when ranking the objects by distance. 
 | 
static class  | 
AveragePrecisionAtK.Parameterizer<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
Algorithm to gather statistics over the distance distribution in the data
 set. 
 | 
static class  | 
DistanceStatisticsWithClasses.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
EvaluateRankingQuality<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries. 
 | 
static class  | 
EvaluateRankingQuality.Parameterizer<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
RankingQualityHistogram<O,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries. 
 | 
static class  | 
RankingQualityHistogram.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CacheDoubleDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Wrapper to convert a traditional text-serialized result into a on-disk matrix
 for random access. 
 | 
static class  | 
CacheDoubleDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
CacheFloatDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Wrapper to convert a traditional text-serialized result into a on-disk matrix
 for random access. 
 | 
static class  | 
CacheFloatDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ComputeKNNOutlierScores<O,D extends NumberDistance<D,?>>
Application that runs a series of kNN-based algorithms on a data set, for
 building an ensemble in a second step. 
 | 
static class  | 
ComputeKNNOutlierScores.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KNNExplorer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
User application to explore the k Nearest Neighbors for a given data set and
 distance function. 
 | 
static class  | 
KNNExplorer.Parameterizer<O extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> | 
AbstractSimilarityAdapter.similarityFunction
Holds the similarity function. 
 | 
protected NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> | 
AbstractSimilarityAdapter.Parameterizer.similarityFunction
Holds the similarity function. 
 | 
private SimilarityQuery<? super O,? extends NumberDistance<?,?>> | 
AbstractSimilarityAdapter.Instance.similarityQuery
The similarity query we use. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
NumberDistanceParser<D extends NumberDistance<D,?>>
Provides a parser for parsing one distance value per line. 
 | 
static class  | 
NumberDistanceParser.Parameterizer<D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private D | 
NumberDistanceParser.distanceFactory
The distance function. 
 | 
protected D | 
NumberDistanceParser.Parameterizer.distanceFactory
The distance function. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
NumberDistance<D extends NumberDistance<D,N>,N extends Number>
Provides a Distance for a number-valued distance. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BitDistance
Provides a Distance for a bit-valued distance. 
 | 
class  | 
DoubleDistance
Provides a Distance for a double-valued distance. 
 | 
class  | 
FloatDistance
Provides a Distance for a float-valued distance. 
 | 
class  | 
IntegerDistance
Provides an integer distance value. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected PrimitiveDistanceFunction<? super O,? extends NumberDistance<?,?>> | 
InvertedDistanceSimilarityFunction.distanceFunction
Holds the similarity function. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private DistanceFunction<? super O,? extends NumberDistance<?,?>> | 
ComputeSimilarityMatrixImage.distanceFunction
The distance function to use 
 | 
private DistanceFunction<O,? extends NumberDistance<?,?>> | 
ComputeSimilarityMatrixImage.Parameterizer.distanceFunction
The distance function to use 
 | 
| Constructor and Description | 
|---|
ComputeSimilarityMatrixImage(DistanceFunction<? super O,? extends NumberDistance<?,?>> distanceFunction,
                            ScalingFunction scaling,
                            boolean skipzero)
Constructor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
(package private) class  | 
MkAppDirectoryEntry<D extends NumberDistance<D,?>>
Represents an entry in a directory node of a MkApp-Tree. 
 | 
(package private) interface  | 
MkAppEntry<D extends NumberDistance<D,?>>
Defines the requirements for an entry in an MkCop-Tree node. 
 | 
(package private) class  | 
MkAppLeafEntry<D extends NumberDistance<D,?>>
Represents an entry in a leaf node of a MkApp-Tree. 
 | 
class  | 
MkAppTree<O,D extends NumberDistance<D,?>>
MkAppTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k < kmax. 
 | 
class  | 
MkAppTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkApp-Tree 
 | 
static class  | 
MkAppTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
MkAppTreeIndex<O,D extends NumberDistance<D,?>>
MkAppTree used as database index. 
 | 
(package private) class  | 
MkAppTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an MkApp-Tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
(package private) class  | 
MkCoPDirectoryEntry<D extends NumberDistance<D,?>>
Represents an entry in a directory node of an MkCop-Tree. 
 | 
(package private) interface  | 
MkCoPEntry<D extends NumberDistance<D,?>>
Defines the requirements for an entry in an MkCop-Tree node. 
 | 
(package private) class  | 
MkCoPLeafEntry<D extends NumberDistance<D,?>>
Represents an entry in a leaf node of a MkCoP-Tree. 
 | 
class  | 
MkCoPTree<O,D extends NumberDistance<D,?>>
MkCopTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k < kmax. 
 | 
class  | 
MkCopTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkCoPTree-Tree 
 | 
static class  | 
MkCopTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
MkCoPTreeIndex<O,D extends NumberDistance<D,?>>
MkCoPTree used as database index. 
 | 
(package private) class  | 
MkCoPTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an MkCop-Tree. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<O,D extends NumberDistance<D,?>>  | 
ApproximationLine.getApproximatedKnnDistance(int k,
                          DistanceQuery<O,D> distanceFunction)
Returns the approximated knn-distance at the specified k. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private <D extends NumberDistance<?,?>>  | 
PCAFilteredAutotuningRunner.assertSortedByDistance(Collection<? extends DistanceResultPair<D>> results)
Ensure that the results are sorted by distance. 
 | 
<D extends NumberDistance<?,?>>  | 
PCAFilteredAutotuningRunner.processQueryResult(Collection<? extends DistanceResultPair<D>> results,
                  Relation<? extends V> database)  | 
<D extends NumberDistance<?,?>>  | 
PCARunner.processQueryResult(Collection<? extends DistanceResultPair<D>> results,
                  Relation<? extends V> database)
Run PCA on a QueryResult Collection 
 | 
<D extends NumberDistance<?,?>>  | 
PCAFilteredRunner.processQueryResult(Collection<? extends DistanceResultPair<D>> results,
                  Relation<? extends V> database)
Run PCA on a QueryResult Collection 
 | 
<D extends NumberDistance<?,?>>  | 
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<? extends DistanceResultPair<D>> results,
                   Relation<? extends V> database)  | 
<D extends NumberDistance<?,?>>  | 
CovarianceMatrixBuilder.processQueryResults(Collection<? extends DistanceResultPair<D>> results,
                   Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection
 
 By default it will just collect the ids and run processIds 
 | 
<D extends NumberDistance<?,?>>  | 
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<? extends DistanceResultPair<D>> results,
                   Relation<? extends V> database,
                   int k)
Compute Covariance Matrix for a QueryResult Collection
 
 By default it will just collect the ids and run processIds 
 | 
<D extends NumberDistance<?,?>>  | 
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<? extends DistanceResultPair<D>> results,
                   Relation<? extends V> database,
                   int k)  | 
<D extends NumberDistance<?,?>>  | 
CovarianceMatrixBuilder.processQueryResults(Collection<? extends DistanceResultPair<D>> results,
                   Relation<? extends V> database,
                   int k)
Compute Covariance Matrix for a QueryResult Collection
 
 By default it will just collect the ids and run processIds 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OPTICSNumberDistance<D extends NumberDistance<D,?>>
Adapter that will map a regular number distance to its double value. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <D extends NumberDistance<?,?>>  | 
SVGHyperSphere.drawCross(SVGPlot svgp,
         Projection2D proj,
         NumberVector<?,?> mid,
         D rad)
Wireframe "cross" hypersphere 
 | 
static <D extends NumberDistance<?,?>>  | 
SVGHyperSphere.drawEuclidean(SVGPlot svgp,
             Projection2D proj,
             NumberVector<?,?> mid,
             D rad)
Wireframe "euclidean" hypersphere 
 | 
static <D extends NumberDistance<?,?>>  | 
SVGHyperSphere.drawLp(SVGPlot svgp,
      Projection2D proj,
      NumberVector<?,?> mid,
      D rad,
      double p)
Wireframe "Lp" hypersphere 
 | 
static <D extends NumberDistance<?,?>>  | 
SVGHyperSphere.drawManhattan(SVGPlot svgp,
             Projection2D proj,
             NumberVector<?,?> mid,
             D rad)
Wireframe "manhattan" hypersphere 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
TreeSphereVisualization<D extends NumberDistance<D,?>,N extends AbstractMTreeNode<?,D,N,E>,E extends MTreeEntry<D>>
Visualize the bounding sphere of a metric index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DistanceStddevOutlier<O,D extends NumberDistance<D,?>>
A simple outlier detection algorithm that computes the standard deviation of
 the kNN distances. 
 | 
static class  | 
DistanceStddevOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class 
 |