| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.outlier | 
 Outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.meta | 
 Meta outlier detection algorithms: external scores, score rescaling. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | 
 Spatial outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | 
 Subspace outlier detection methods. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.trivial | 
 Trivial outlier detection algorithms: no outliers, all outliers, label outliers. 
 | 
| tutorial.outlier | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ABOD<V extends NumberVector<V,?>>
Angle-Based Outlier Detection
 
 Outlier detection using variance analysis on angles, especially for high
 dimensional data sets. 
 | 
class  | 
AbstractAggarwalYuOutlier<V extends NumberVector<?,?>>
Abstract base class for the sparse-grid-cell based outlier detection of
 Aggarwal and Yu. 
 | 
class  | 
AbstractDBOutlier<O,D extends Distance<D>>
Simple distance based outlier detection algorithms. 
 | 
class  | 
AggarwalYuEvolutionary<V extends NumberVector<?,?>>
EAFOD provides the evolutionary outlier detection algorithm, an algorithm to
 detect outliers for high dimensional data. 
 | 
class  | 
AggarwalYuNaive<V extends NumberVector<?,?>>
BruteForce provides a naive brute force algorithm in which all k-subsets of
 dimensions are examined and calculates the sparsity coefficient to find
 outliers. 
 | 
class  | 
ALOCI<O extends NumberVector<O,?>,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "approximate Local Correlation Integral". 
 | 
class  | 
DBOutlierDetection<O,D extends Distance<D>>
Simple distanced based outlier detection algorithm. 
 | 
class  | 
DBOutlierScore<O,D extends Distance<D>>
Compute percentage of neighbors in the given neighborhood with size d. 
 | 
class  | 
EMOutlier<V extends NumberVector<V,?>>
outlier detection algorithm using EM Clustering. 
 | 
class  | 
GaussianModel<V extends NumberVector<V,?>>
Outlier have smallest GMOD_PROB: the outlier scores is the
 probability density of the assumed distribution. 
 | 
class  | 
GaussianUniformMixture<V extends NumberVector<V,?>>
Outlier detection algorithm using a mixture model approach. 
 | 
class  | 
HilOut<O extends NumberVector<O,?>>
Fast Outlier Detection in High Dimensional Spaces
 
 Outlier Detection using Hilbert space filling curves
 
 Reference:
 
 F. 
 | 
class  | 
INFLO<O,D extends NumberDistance<D,?>>
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
 Outliers using Symmetric Relationship
 
 Reference:  
Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc.  | 
class  | 
KNNOutlier<O,D extends NumberDistance<D,?>>
 Outlier Detection based on the distance of an object to its k nearest
 neighbor. 
 | 
class  | 
KNNWeightOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the accumulated distances of a point to its k
 nearest neighbors. 
 | 
class  | 
LDOF<O,D extends NumberDistance<D,?>>
 Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
 Database. 
 | 
class  | 
LOCI<O,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "Local Correlation Integral". 
 | 
class  | 
LOF<O,D extends NumberDistance<D,?>>
 Algorithm to compute density-based local outlier factors in a database based
 on a specified parameter  
LOF.K_ID (-lof.k). | 
class  | 
LoOP<O,D extends NumberDistance<D,?>>
LoOP: Local Outlier Probabilities
 
 Distance/density based algorithm similar to LOF to detect outliers, but with
 statistical methods to achieve better result stability. 
 | 
class  | 
OnlineLOF<O,D extends NumberDistance<D,?>>
Incremental version of the  
LOF Algorithm, supports insertions and
 removals. | 
class  | 
OPTICSOF<O,D extends NumberDistance<D,?>>
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
 Outliers in a database. 
 | 
class  | 
ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
 provides the Reference-Based Outlier Detection algorithm, an algorithm that
 computes kNN distances approximately, using reference points. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ExternalDoubleOutlierScore
External outlier detection scores, loading outlier scores from an external
 file. 
 | 
class  | 
FeatureBagging
A simple ensemble method called "Feature bagging" for outlier detection. 
 | 
class  | 
HiCS<V extends NumberVector<V,?>>
Algorithm to compute High Contrast Subspaces for Density-Based Outlier
 Ranking. 
 | 
class  | 
RescaleMetaOutlierAlgorithm
Scale another outlier score using the given scaling function. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private OutlierAlgorithm | 
HiCS.outlierAlgorithm
Outlier detection algorithm 
 | 
private OutlierAlgorithm | 
HiCS.Parameterizer.outlierAlgorithm
Holds the value of  
HiCS.Parameterizer.ALGO_ID. | 
| Constructor and Description | 
|---|
HiCS(int m,
    double alpha,
    OutlierAlgorithm outlierAlgorithm,
    GoodnessOfFitTest statTest,
    int cutoff,
    Long seed)
Constructor 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>
Abstract base class for distance-based spatial outlier detection methods. 
 | 
class  | 
AbstractNeighborhoodOutlier<O>
Abstract base class for spatial outlier detection methods using a spatial
 neighborhood. 
 | 
class  | 
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers. 
 | 
class  | 
CTLuMeanMultipleAttributes<N,O extends NumberVector<?,?>>
Mean Approach is used to discover spatial outliers with multiple attributes. 
 | 
class  | 
CTLuMedianAlgorithm<N>
Median Algorithm of C. 
 | 
class  | 
CTLuMedianMultipleAttributes<N,O extends NumberVector<?,?>>
Median Approach is used to discover spatial outliers with multiple
 attributes. 
 | 
class  | 
CTLuMoranScatterplotOutlier<N>
Moran scatterplot outliers, based on the standardized deviation from the
 local and global means. 
 | 
class  | 
CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks. 
 | 
class  | 
CTLuScatterplotOutlier<N>
Scatterplot-outlier is a spatial outlier detection method that performs a
 linear regression of object attributes and their neighbors average value. 
 | 
class  | 
CTLuZTestOutlier<N>
Detect outliers by comparing their attribute value to the mean and standard
 deviation of their neighborhood. 
 | 
class  | 
SLOM<N,O,D extends NumberDistance<D,?>>
SLOM: a new measure for local spatial outliers
 
 
 Reference: 
Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero.  | 
class  | 
SOF<N,O,D extends NumberDistance<D,?>>
The Spatial Outlier Factor (SOF) is a spatial
  
LOF variation. | 
class  | 
TrimmedMeanApproach<N>
A Trimmed Mean Approach to Finding Spatial Outliers. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OutRankS1
OutRank: ranking outliers in high dimensional data. 
 | 
class  | 
OUTRES<V extends NumberVector<V,?>>
Adaptive outlierness for subspace outlier ranking (OUTRES). 
 | 
class  | 
SOD<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Subspace Outlier Degree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ByLabelOutlier
Trivial algorithm that marks outliers by their label. 
 | 
class  | 
TrivialAllOutlier
Trivial method that claims all objects to be outliers. 
 | 
class  | 
TrivialGeneratedOutlier
Extract outlier score from the model the objects were generated by. 
 | 
class  | 
TrivialNoOutlier
Trivial method that claims to find no outliers. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DistanceStddevOutlier<O,D extends NumberDistance<D,?>>
A simple outlier detection algorithm that computes the standard deviation of
 the kNN distances. 
 |