| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | 
 Axis-parallel subspace clustering algorithms
 
 The clustering algorithms in this package are instances of both, projected clustering algorithms or
 subspace clustering algorithms according to the classical but somewhat obsolete classification schema
 of clustering algorithms for axis-parallel subspaces. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private Map<DBID,PROCLUS.PROCLUSCluster> | 
PROCLUS.assignPoints(Map<DBID,Set<Integer>> dimensions,
            Relation<V> database)
Assigns the objects to the clusters. 
 | 
private List<PROCLUS.PROCLUSCluster> | 
PROCLUS.finalAssignment(List<Pair<V,Set<Integer>>> dimensions,
               Relation<V> database)
Refinement step to assign the objects to the final clusters. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private ModifiableDBIDs | 
PROCLUS.computeBadMedoids(Map<DBID,PROCLUS.PROCLUSCluster> clusters,
                 int threshold)
Computes the bad medoids, where the medoid of a cluster with less than the
 specified threshold of objects is bad. 
 | 
private double | 
PROCLUS.evaluateClusters(Map<DBID,PROCLUS.PROCLUSCluster> clusters,
                Map<DBID,Set<Integer>> dimensions,
                Relation<V> database)
Evaluates the quality of the clusters. 
 | 
private List<Pair<V,Set<Integer>>> | 
PROCLUS.findDimensions(List<PROCLUS.PROCLUSCluster> clusters,
              Relation<V> database)
Refinement step that determines the set of correlated dimensions for each
 cluster centroid. 
 |