de.lmu.ifi.dbs.elki.utilities.scaling.outlier
Class MinusLogGammaScaling
java.lang.Object
de.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierGammaScaling
de.lmu.ifi.dbs.elki.utilities.scaling.outlier.MinusLogGammaScaling
- All Implemented Interfaces:
- Parameterizable, OutlierScalingFunction, ScalingFunction
public class MinusLogGammaScaling
- extends OutlierGammaScaling
Scaling that can map arbitrary values to a probability in the range of [0:1],
by assuming a Gamma distribution on the data and evaluating the Gamma CDF.
- Author:
- Erich Schubert
Field Summary |
(package private) double |
max
Maximum value seen |
(package private) double |
mlogmax
Minimum value (after log step, so maximum again) |
Method Summary |
void |
prepare(Database<?> db,
Result result,
OutlierResult or)
Prepare is called once for each data set, before getScaled() will be called. |
protected double |
preScale(double score)
Normalize data if necessary. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
max
double max
- Maximum value seen
mlogmax
double mlogmax
- Minimum value (after log step, so maximum again)
MinusLogGammaScaling
public MinusLogGammaScaling()
- Constructor, adhering to
Parameterizable
preScale
protected double preScale(double score)
- Description copied from class:
OutlierGammaScaling
- Normalize data if necessary.
Note: this is overridden by
MinusLogGammaScaling
!
- Overrides:
preScale
in class OutlierGammaScaling
- Parameters:
score
- Original score
- Returns:
- Normalized score.
prepare
public void prepare(Database<?> db,
Result result,
OutlierResult or)
- Description copied from interface:
OutlierScalingFunction
- Prepare is called once for each data set, before getScaled() will be called.
This function can be used to extract global parameters such as means, minimums
or maximums from the Database, Result or Annotation.
- Specified by:
prepare
in interface OutlierScalingFunction
- Overrides:
prepare
in class OutlierGammaScaling
- Parameters:
db
- Database usedresult
- Result objector
- Outlier result to use