|
|
|||||||||||||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||||||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<O,R>
de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm<V,DoubleDistance,OutlierResult>
de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection<V,N>
V - a type of NumberVector as a suitable data object for this
algorithmN - the type of the attributes of the feature vector@Title(value="An Efficient Reference-based Approach to Outlier Detection in Large Datasets")
@Description(value="Computes kNN distances approximately, using reference points with various reference point strategies.")
@Reference(authors="Y. Pei, O.R.Zaiane, Y. Gao",
title="An Efficient Reference-based Approach to Outlier Detection in Large Datasets",
booktitle="Proc. 19th IEEE Int. Conf. on Data Engineering (ICDE \'03), Bangalore, India, 2003",
url="http://dx.doi.org/10.1109/ICDM.2006.17")
public class ReferenceBasedOutlierDetection<V extends NumberVector<V,N>,N extends Number>
provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points. There are two subclasses for this algorithm: One computes reference points that lay randomly in the data space, the other one computes reference points that lay on a grid in the data space.
Reference:
Y. Pei, O. R. Zaiane, Y. Gao: An Efficient Reference-Based Approach to
Outlier Detection in Large Datasets. In: Proc. IEEE Int. Conf. on Data
Mining (ICDM'06), Hong Kong, China, 2006.
| Field Summary | |
|---|---|
private int |
k
Holds the value of K_PARAM. |
static OptionID |
K_ID
OptionID for K_PARAM |
private IntParameter |
K_PARAM
Parameter to specify the number of nearest neighbors of an object, to be considered for computing its REFOD_SCORE, must be an integer greater than 1. |
static AssociationID<Double> |
REFOD_SCORE
The association id to associate the REFOD_SCORE of an object for the Reference based outlier detection algorithm. |
private ReferencePointsHeuristic<V> |
refp
Stores the reference point strategy |
static OptionID |
REFP_ID
OptionID for REFP_PARAM |
private ObjectParameter<ReferencePointsHeuristic<V>> |
REFP_PARAM
Parameter for the reference points heuristic. |
| Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
|---|
DISTANCE_FUNCTION_ID, DISTANCE_FUNCTION_PARAM |
| Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debug, logger |
| Constructor Summary | |
|---|---|
ReferenceBasedOutlierDetection(Parameterization config)
Constructor, adhering to Parameterizable |
|
| Method Summary | |
|---|---|
double |
computeDensity(List<DistanceResultPair<DoubleDistance>> referenceDists,
int index)
Computes the density of an object. |
List<DistanceResultPair<DoubleDistance>> |
computeDistanceVector(V refPoint,
Database<V> database)
Computes for each object the distance to one reference point. |
Collection<V> |
computeReferencePoints(Database<V> database)
Computes the reference points. |
protected OutlierResult |
runInTime(Database<V> database)
Runs the algorithm in the timed evaluation part. |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
|---|
getDistanceFactory, getDistanceFunction |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
isTime, isVerbose, run, setTime, setVerbose |
| Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debugFine, debugFiner, debugFinest, exception, progress, verbose, warning |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Field Detail |
|---|
public static final AssociationID<Double> REFOD_SCORE
public static final OptionID REFP_ID
REFP_PARAM
private final ObjectParameter<ReferencePointsHeuristic<V extends NumberVector<V,N>>> REFP_PARAM
Key: -refod.refp
public static final OptionID K_ID
K_PARAM
private final IntParameter K_PARAM
Key: -refod.k
private int k
K_PARAM.
private ReferencePointsHeuristic<V extends NumberVector<V,N>> refp
| Constructor Detail |
|---|
public ReferenceBasedOutlierDetection(Parameterization config)
Parameterizable
config - Parameterization| Method Detail |
|---|
protected OutlierResult runInTime(Database<V> database)
throws IllegalStateException
runInTime in class AbstractAlgorithm<V extends NumberVector<V,N>,OutlierResult>database - the database to run the algorithm on
IllegalStateException - if the algorithm has not been initialized
properly (e.g. the setParameters(String[]) method has been failed
to be called).public Collection<V> computeReferencePoints(Database<V> database)
database - Database to build reference points for
public List<DistanceResultPair<DoubleDistance>> computeDistanceVector(V refPoint,
Database<V> database)
refPoint - Reference Point Feature Vectordatabase - database to work on
public double computeDensity(List<DistanceResultPair<DoubleDistance>> referenceDists,
int index)
referenceDists - vector of the reference distances,index - index of the current object
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||