|
|
|||||||||||||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable
de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<V,Clustering<Model>>
de.lmu.ifi.dbs.elki.algorithm.clustering.ProjectedDBSCAN<V>
V
- the type of Realvector handled by this Algorithmpublic abstract class ProjectedDBSCAN<V extends RealVector<V,?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
Field Summary | |
---|---|
static OptionID |
DISTANCE_FUNCTION_ID
OptionID for DISTANCE_FUNCTION_PARAM |
protected ClassParameter<LocallyWeightedDistanceFunction<V,?>> |
DISTANCE_FUNCTION_PARAM
Parameter to specify the distance function to determine the distance between database objects, must extend AbstractLocallyWeightedDistanceFunction . |
private LocallyWeightedDistanceFunction<V,?> |
distanceFunction
Holds the instance of the distance function specified by DISTANCE_FUNCTION_PARAM . |
protected String |
epsilon
Holds the value of EPSILON_PARAM . |
static OptionID |
EPSILON_ID
OptionID for EPSILON_PARAM |
private PatternParameter |
EPSILON_PARAM
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to LocallyWeightedDistanceFunction . |
private int |
lambda
Holds the value of LAMBDA_PARAM . |
static OptionID |
LAMBDA_ID
OptionID for LAMBDA_PARAM |
private IntParameter |
LAMBDA_PARAM
Parameter to specify the intrinsic dimensionality of the clusters to find, must be an integer greater than 0. |
protected int |
minpts
Holds the value of MINPTS_PARAM . |
static OptionID |
MINPTS_ID
OptionID for MINPTS_PARAM |
private IntParameter |
MINPTS_PARAM
Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0. |
private Set<Integer> |
noise
Holds a set of noise. |
private Set<Integer> |
processedIDs
Holds a set of processed ids. |
private Clustering<Model> |
result
Provides the result of the algorithm. |
private List<List<Integer>> |
resultList
Holds a list of clusters found. |
Fields inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
---|
optionHandler |
Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debug, logger |
Constructor Summary | |
---|---|
protected |
ProjectedDBSCAN()
Provides the abstract algorithm for variance analysis based DBSCAN, adding parameters EPSILON_PARAM , MINPTS_PARAM , LAMBDA_PARAM , and DISTANCE_FUNCTION_PARAM
to the option handler additionally to parameters of super class. |
Method Summary | |
---|---|
protected void |
expandCluster(Database<V> database,
Integer startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
ExpandCluster function of DBSCAN. |
Clustering<Model> |
getResult()
Retrieve the result. |
abstract Class<?> |
preprocessorClass()
Returns the class actually used as VarianceAnalysisPreprocessor . |
protected Clustering<Model> |
runInTime(Database<V> database)
The run method encapsulated in measure of runtime. |
List<String> |
setParameters(List<String> args)
Calls the super method and instantiates distanceFunction according to the value of parameter
DISTANCE_FUNCTION_PARAM
and sets additionally the values of the parameters
EPSILON_PARAM MINPTS_PARAM , and LAMBDA_PARAM . |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
isTime, isVerbose, run, setTime, setVerbose |
Methods inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
---|
addOption, addParameterizable, addParameterizable, checkGlobalParameterConstraints, collectOptions, getAttributeSettings, getParameters, rememberParametersExcept, removeOption, removeParameterizable, shortDescription |
Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debugFine, debugFiner, debugFinest, exception, progress, verbose, warning |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
---|
run |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.Algorithm |
---|
getDescription, setTime, setVerbose |
Methods inherited from interface de.lmu.ifi.dbs.elki.utilities.optionhandling.Parameterizable |
---|
checkGlobalParameterConstraints, collectOptions, getParameters, shortDescription |
Field Detail |
---|
public static final OptionID DISTANCE_FUNCTION_ID
DISTANCE_FUNCTION_PARAM
protected final ClassParameter<LocallyWeightedDistanceFunction<V extends RealVector<V,?>,?>> DISTANCE_FUNCTION_PARAM
AbstractLocallyWeightedDistanceFunction
.
Key: -projdbscan.distancefunction
Default value: LocallyWeightedDistanceFunction
private LocallyWeightedDistanceFunction<V extends RealVector<V,?>,?> distanceFunction
DISTANCE_FUNCTION_PARAM
.
public static final OptionID EPSILON_ID
EPSILON_PARAM
private final PatternParameter EPSILON_PARAM
LocallyWeightedDistanceFunction
.
Key: -projdbscan.epsilon
protected String epsilon
EPSILON_PARAM
.
public static final OptionID LAMBDA_ID
LAMBDA_PARAM
private final IntParameter LAMBDA_PARAM
Key: -projdbscan.lambda
private int lambda
LAMBDA_PARAM
.
public static final OptionID MINPTS_ID
MINPTS_PARAM
private final IntParameter MINPTS_PARAM
Key: -projdbscan.minpts
protected int minpts
MINPTS_PARAM
.
private List<List<Integer>> resultList
private Clustering<Model> result
private Set<Integer> noise
private Set<Integer> processedIDs
Constructor Detail |
---|
protected ProjectedDBSCAN()
EPSILON_PARAM
, MINPTS_PARAM
, LAMBDA_PARAM
, and DISTANCE_FUNCTION_PARAM
to the option handler additionally to parameters of super class.
Method Detail |
---|
protected Clustering<Model> runInTime(Database<V> database) throws IllegalStateException
AbstractAlgorithm
runInTime
in class AbstractAlgorithm<V extends RealVector<V,?>,Clustering<Model>>
database
- the database to run the algorithm on
IllegalStateException
- if the algorithm has not been initialized
properly (e.g. the setParameters(String[]) method has been failed
to be called).protected void expandCluster(Database<V> database, Integer startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
database
- the database to run the algorithm onstartObjectID
- the object id of the database object to start the expansion withobjprog
- the progress object for logging the current statuspublic List<String> setParameters(List<String> args) throws ParameterException
distanceFunction
according to the value of parameter
DISTANCE_FUNCTION_PARAM
and sets additionally the values of the parameters
EPSILON_PARAM
MINPTS_PARAM
, and LAMBDA_PARAM
.
The remaining parameters are passed to the distanceFunction
.
setParameters
in interface Parameterizable
setParameters
in class AbstractAlgorithm<V extends RealVector<V,?>,Clustering<Model>>
args
- parameters to set the attributes accordingly to
ParameterException
- in case of wrong parameter-settingpublic abstract Class<?> preprocessorClass()
VarianceAnalysisPreprocessor
.
VarianceAnalysisPreprocessor
public Clustering<Model> getResult()
ClusteringAlgorithm
getResult
in interface Algorithm<V extends RealVector<V,?>,Clustering<Model>>
getResult
in interface ClusteringAlgorithm<Clustering<Model>,V extends RealVector<V,?>>
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |